These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24555891)

  • 1. Systems biology: a new tool for farm animal science.
    Hollung K; Timperio AM; Olivan M; Kemp C; Coto-Montes A; Sierra V; Zolla L
    Curr Protein Pept Sci; 2014 Mar; 15(2):100-17. PubMed ID: 24555891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meat science: From proteomics to integrated omics towards system biology.
    D'Alessandro A; Zolla L
    J Proteomics; 2013 Jan; 78():558-77. PubMed ID: 23137709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach.
    Muroya S
    Meat Sci; 2023 Jan; 195():108995. PubMed ID: 36228510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle proteomics in livestock production.
    Picard B; Berri C; Lefaucheur L; Molette C; Sayd T; Terlouw C
    Brief Funct Genomics; 2010 May; 9(3):259-78. PubMed ID: 20308039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What functional proteomic and biochemical analysis tell us about animal stress in beef?
    Díaz F; Díaz-Luis A; Sierra V; Diñeiro Y; González P; García-Torres S; Tejerina D; Romero-Fernández MP; Cabeza de Vaca M; Coto-Montes A; Oliván M
    J Proteomics; 2020 Apr; 218():103722. PubMed ID: 32109608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Muscle to meat" molecular events and technological transformations: the proteomics insight.
    Paredi G; Raboni S; Bendixen E; de Almeida AM; Mozzarelli A
    J Proteomics; 2012 Jul; 75(14):4275-89. PubMed ID: 22543183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of animal mixing as a stressor on biomarkers of autophagy and oxidative stress during pig muscle maturation.
    Rubio-González A; Potes Y; Illán-Rodríguez D; Vega-Naredo I; Sierra V; Caballero B; Fàbrega E; Velarde A; Dalmau A; Oliván M; Coto-Montes A
    Animal; 2015 Jul; 9(7):1188-94. PubMed ID: 25851611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development.
    Zhou B; Shen Z; Liu Y; Wang C; Shen QW
    Food Chem; 2019 Sep; 293():396-407. PubMed ID: 31151627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mitochondria on muscle cell death and meat tenderization.
    Sierra V; Oliván M
    Recent Pat Endocr Metab Immune Drug Discov; 2013 May; 7(2):120-9. PubMed ID: 23432120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization.
    Huff Lonergan E; Zhang W; Lonergan SM
    Meat Sci; 2010 Sep; 86(1):184-95. PubMed ID: 20566247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and environmental effects on meat quality.
    Warner RD; Greenwood PL; Pethick DW; Ferguson DM
    Meat Sci; 2010 Sep; 86(1):171-83. PubMed ID: 20561754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies.
    Warner RD; Wheeler TL; Ha M; Li X; Bekhit AE; Morton J; Vaskoska R; Dunshea FR; Liu R; Purslow P; Zhang W
    Meat Sci; 2022 Mar; 185():108657. PubMed ID: 34998162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed.
    Abd El-Hack ME; Abdelnour SA; Swelum AA; Arif M
    Mol Biol Rep; 2018 Oct; 45(5):1445-1456. PubMed ID: 30006771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Farm animal proteomics--a review.
    Bendixen E; Danielsen M; Hollung K; Gianazza E; Miller I
    J Proteomics; 2011 Mar; 74(3):282-93. PubMed ID: 21112346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pig cognitive bias affects the conversion of muscle into meat by antioxidant and autophagy mechanisms.
    Potes Y; Oliván M; Rubio-González A; de Luxán-Delgado B; Díaz F; Sierra V; Arroyo L; Peña R; Bassols A; González J; Carreras R; Velarde A; Muñoz-Torres M; Coto-Montes A
    Animal; 2017 Nov; 11(11):2027-2035. PubMed ID: 28416039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chianina beef tenderness investigated through integrated Omics.
    D'Alessandro A; Marrocco C; Rinalducci S; Mirasole C; Failla S; Zolla L
    J Proteomics; 2012 Jul; 75(14):4381-98. PubMed ID: 22510581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the unknowns involved in the transformation of muscle to meat.
    England EM; Scheffler TL; Kasten SC; Matarneh SK; Gerrard DE
    Meat Sci; 2013 Dec; 95(4):837-43. PubMed ID: 23673227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein expression and oxygen consumption rate of early postmortem mitochondria relate to meat tenderness.
    Grabež V; Kathri M; Phung V; Moe KM; Slinde E; Skaugen M; Saarem K; Egelandsdal B
    J Anim Sci; 2015 Apr; 93(4):1967-79. PubMed ID: 26020220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system.
    Koohmaraie M; Geesink GH
    Meat Sci; 2006 Sep; 74(1):34-43. PubMed ID: 22062714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding meat quality through the application of genomic and proteomic approaches.
    Mullen AM; Stapleton PC; Corcoran D; Hamill RM; White A
    Meat Sci; 2006 Sep; 74(1):3-16. PubMed ID: 22062712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.