BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24556365)

  • 1. Endocrine regulation of bone and energy metabolism in hibernating mammals.
    Doherty AH; Florant GL; Donahue SW
    Integr Comp Biol; 2014 Sep; 54(3):463-83. PubMed ID: 24556365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone adaptation and osteoporosis prevention in hibernating mammals.
    Donahue SW
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jun; 280():111411. PubMed ID: 36871815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength.
    McGee-Lawrence ME; Carey HV; Donahue SW
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1999-2014. PubMed ID: 18843088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis.
    Arfat Y; Rani A; Jingping W; Hocart CH
    J Comp Physiol B; 2020 Jan; 190(1):1-16. PubMed ID: 31897596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.
    McGee-Lawrence M; Buckendahl P; Carpenter C; Henriksen K; Vaughan M; Donahue S
    J Exp Biol; 2015 Jul; 218(Pt 13):2067-74. PubMed ID: 26157160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.
    Doherty AH; Roteliuk DM; Gookin SE; McGrew AK; Broccardo CJ; Condon KW; Prenni JE; Wojda SJ; Florant GL; Donahue SW
    Physiol Biochem Zool; 2016; 89(5):364-76. PubMed ID: 27617358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal Changes in Endocannabinoid Concentrations between Active and Hibernating Marmots (Marmota flaviventris).
    Mulawa EA; Kirkwood JS; Wolfe LM; Wojda SJ; Prenni JE; Florant GL; Donahue SW
    J Biol Rhythms; 2018 Aug; 33(4):388-401. PubMed ID: 29862861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoporosis prevention in an extraordinary hibernating bear.
    Donahue SW; Wojda SJ; McGee-Lawrence ME; Auger J; Black HL
    Bone; 2021 Apr; 145():115845. PubMed ID: 33450432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.
    Wojda SJ; Weyland DR; Gray SK; McGee-Lawrence ME; Drummer TD; Donahue SW
    Anat Rec (Hoboken); 2013 Aug; 296(8):1148-53. PubMed ID: 23728917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators.
    Wang SQ; Lakatta EG; Cheng H; Zhou ZQ
    J Exp Biol; 2002 Oct; 205(Pt 19):2957-62. PubMed ID: 12200399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of energy availability in Mammalian hibernation: a cost-benefit approach.
    Humphries MM; Thomas DW; Kramer DL
    Physiol Biochem Zool; 2003; 76(2):165-79. PubMed ID: 12794670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arctic Ground Squirrels Limit Bone Loss during the Prolonged Physical Inactivity Associated with Hibernation.
    Wojda SJ; Gridley RA; McGee-Lawrence ME; Drummer TD; Hess A; Kohl F; Barnes BM; Donahue SW
    Physiol Biochem Zool; 2016; 89(1):72-80. PubMed ID: 27082526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.
    Willis CK; Wilcox A
    Horm Behav; 2014 Jun; 66(1):66-73. PubMed ID: 24768718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of neurectomy and hibernation on bone properties and the endocannabinoid system in marmots (Marmota flaviventris).
    Cravens EM; Kirkwood JS; Wolfe LM; Packer RA; Whalen LR; Wojda SJ; Prenni JE; Florant GL; Donahue SW
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Mar; 241():110621. PubMed ID: 31783174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F; Martin SL
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hibernation is associated with increased survival and the evolution of slow life histories among mammals.
    Turbill C; Bieber C; Ruf T
    Proc Biol Sci; 2011 Nov; 278(1723):3355-63. PubMed ID: 21450735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature.
    Carey HV; Andrews MT; Martin SL
    Physiol Rev; 2003 Oct; 83(4):1153-81. PubMed ID: 14506303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling.
    Tessier SN; Storey KB
    Biomol Concepts; 2016 May; 7(2):69-92. PubMed ID: 26982616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A temporal study on musculoskeletal morphology and metabolism in hibernating Daurian ground squirrels (Spermophilus dauricus).
    Zhang J; Chang H; Yin R; Xu S; Wang H; Gao Y
    Bone; 2021 Mar; 144():115826. PubMed ID: 33348129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).
    McGee ME; Maki AJ; Johnson SE; Nelson OL; Robbins CT; Donahue SW
    Bone; 2008 Feb; 42(2):396-404. PubMed ID: 18037367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.