These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24556365)

  • 1. Endocrine regulation of bone and energy metabolism in hibernating mammals.
    Doherty AH; Florant GL; Donahue SW
    Integr Comp Biol; 2014 Sep; 54(3):463-83. PubMed ID: 24556365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone adaptation and osteoporosis prevention in hibernating mammals.
    Donahue SW
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jun; 280():111411. PubMed ID: 36871815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength.
    McGee-Lawrence ME; Carey HV; Donahue SW
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1999-2014. PubMed ID: 18843088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis.
    Arfat Y; Rani A; Jingping W; Hocart CH
    J Comp Physiol B; 2020 Jan; 190(1):1-16. PubMed ID: 31897596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.
    McGee-Lawrence M; Buckendahl P; Carpenter C; Henriksen K; Vaughan M; Donahue S
    J Exp Biol; 2015 Jul; 218(Pt 13):2067-74. PubMed ID: 26157160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.
    Doherty AH; Roteliuk DM; Gookin SE; McGrew AK; Broccardo CJ; Condon KW; Prenni JE; Wojda SJ; Florant GL; Donahue SW
    Physiol Biochem Zool; 2016; 89(5):364-76. PubMed ID: 27617358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal Changes in Endocannabinoid Concentrations between Active and Hibernating Marmots (Marmota flaviventris).
    Mulawa EA; Kirkwood JS; Wolfe LM; Wojda SJ; Prenni JE; Florant GL; Donahue SW
    J Biol Rhythms; 2018 Aug; 33(4):388-401. PubMed ID: 29862861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoporosis prevention in an extraordinary hibernating bear.
    Donahue SW; Wojda SJ; McGee-Lawrence ME; Auger J; Black HL
    Bone; 2021 Apr; 145():115845. PubMed ID: 33450432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.
    Wojda SJ; Weyland DR; Gray SK; McGee-Lawrence ME; Drummer TD; Donahue SW
    Anat Rec (Hoboken); 2013 Aug; 296(8):1148-53. PubMed ID: 23728917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators.
    Wang SQ; Lakatta EG; Cheng H; Zhou ZQ
    J Exp Biol; 2002 Oct; 205(Pt 19):2957-62. PubMed ID: 12200399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of energy availability in Mammalian hibernation: a cost-benefit approach.
    Humphries MM; Thomas DW; Kramer DL
    Physiol Biochem Zool; 2003; 76(2):165-79. PubMed ID: 12794670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arctic Ground Squirrels Limit Bone Loss during the Prolonged Physical Inactivity Associated with Hibernation.
    Wojda SJ; Gridley RA; McGee-Lawrence ME; Drummer TD; Hess A; Kohl F; Barnes BM; Donahue SW
    Physiol Biochem Zool; 2016; 89(1):72-80. PubMed ID: 27082526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.
    Willis CK; Wilcox A
    Horm Behav; 2014 Jun; 66(1):66-73. PubMed ID: 24768718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of neurectomy and hibernation on bone properties and the endocannabinoid system in marmots (Marmota flaviventris).
    Cravens EM; Kirkwood JS; Wolfe LM; Packer RA; Whalen LR; Wojda SJ; Prenni JE; Florant GL; Donahue SW
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Mar; 241():110621. PubMed ID: 31783174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F; Martin SL
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hibernation is associated with increased survival and the evolution of slow life histories among mammals.
    Turbill C; Bieber C; Ruf T
    Proc Biol Sci; 2011 Nov; 278(1723):3355-63. PubMed ID: 21450735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature.
    Carey HV; Andrews MT; Martin SL
    Physiol Rev; 2003 Oct; 83(4):1153-81. PubMed ID: 14506303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling.
    Tessier SN; Storey KB
    Biomol Concepts; 2016 May; 7(2):69-92. PubMed ID: 26982616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A temporal study on musculoskeletal morphology and metabolism in hibernating Daurian ground squirrels (Spermophilus dauricus).
    Zhang J; Chang H; Yin R; Xu S; Wang H; Gao Y
    Bone; 2021 Mar; 144():115826. PubMed ID: 33348129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).
    McGee ME; Maki AJ; Johnson SE; Nelson OL; Robbins CT; Donahue SW
    Bone; 2008 Feb; 42(2):396-404. PubMed ID: 18037367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.