These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 24556670)
61. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Tiwari A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909 [TBL] [Abstract][Full Text] [Related]
62. Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads. Naito Y; Uenishi K Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795502 [TBL] [Abstract][Full Text] [Related]
63. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application. Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411 [TBL] [Abstract][Full Text] [Related]
64. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration. Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884 [TBL] [Abstract][Full Text] [Related]
65. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications. Oh Y; Noh J; Yoo J; Kang J; Hwang L; Hong J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1860-6. PubMed ID: 21937318 [TBL] [Abstract][Full Text] [Related]
66. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
67. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes. Yoon BR; Park JH; Lee SK J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003 [TBL] [Abstract][Full Text] [Related]
68. Broadband vibration energy harvesting for wireless sensor node power supply in train container. Wang L; Luo G; Jiang Z; Zhang F; Zhao L; Yang P; Lin Q; Maeda R Rev Sci Instrum; 2019 Dec; 90(12):125003. PubMed ID: 31893793 [TBL] [Abstract][Full Text] [Related]
69. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes. Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623 [TBL] [Abstract][Full Text] [Related]
70. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Wang B; Zhang C; Lai L; Dong X; Li Y Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577733 [TBL] [Abstract][Full Text] [Related]
71. Comparison of L-Shaped and U-Shaped Beams in Bidirectional Piezoelectric Vibration Energy Harvesting. Jiang W; Wang L; Wang X; Zhao L; Fang X; Maeda R Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364494 [TBL] [Abstract][Full Text] [Related]
72. Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings. Elvira-Hernández EA; Uscanga-González LA; de León A; López-Huerta F; Herrera-May AL Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917550 [TBL] [Abstract][Full Text] [Related]
73. Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams. Qin H; Mo S; Jiang X; Shang S; Wang P; Liu Y Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334688 [TBL] [Abstract][Full Text] [Related]
74. Shear-Mode-Based Cantilever Driving Low-Frequency Piezoelectric Energy Harvester Using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3. Zeng Z; Ren B; Gai L; Zhao X; Luo H; Wang D IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1192-7. PubMed ID: 27244735 [TBL] [Abstract][Full Text] [Related]
75. Vibration energy harvesting using a piezoelectric circular diaphragm array. Wang W; Yang T; Chen X; Yao X IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2022-6. PubMed ID: 23007776 [TBL] [Abstract][Full Text] [Related]
76. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure. Li X; Li Z; Liu Q; Shan X Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751 [TBL] [Abstract][Full Text] [Related]
77. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode. Liu H; Cong C; Zhao Q; Ma K Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645 [TBL] [Abstract][Full Text] [Related]
78. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling. Shi R; Chen J; Ma T; Li C; Zhang W; Ye D Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718 [TBL] [Abstract][Full Text] [Related]
79. High-Sensitivity Piezoelectric MEMS Accelerometer for Vector Hydrophones. Shi S; Ma L; Kang K; Zhu J; Hu J; Ma H; Pang Y; Wang Z Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630134 [TBL] [Abstract][Full Text] [Related]
80. Vibration Energy Harvester Based on Torsionally Oscillating Magnet. Wang X; Li J; Zhou C; Tao K; Qiao D; Li Y Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]