These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 24556784)

  • 1. From wires to veins: wet-process fabrication of light-weight reticulation photoanodes for dye-sensitized solar cells.
    Feng H; Tao S; Zhang X; Li J; Liu Z; Fan X
    Chem Commun (Camb); 2014 Apr; 50(26):3509-11. PubMed ID: 24556784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges.
    Balasingam SK; Kang MG; Jun Y
    Chem Commun (Camb); 2013 Dec; 49(98):11457-75. PubMed ID: 24196211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient monolithic dye-sensitized solar cells.
    Kwon J; Park NG; Lee JY; Ko MJ; Park JH
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2070-4. PubMed ID: 23432389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically structured microspheres for high-efficiency rutile TiO(2)-based dye-sensitized solar cells.
    Ye M; Zheng D; Wang M; Chen C; Liao W; Lin C; Lin Z
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2893-901. PubMed ID: 24467178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates.
    Ye M; Liu HY; Lin C; Lin Z
    Small; 2013 Jan; 9(2):312-21. PubMed ID: 23047462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical quantification of electron transport resistance of TiO(2) photoanodes for dye-sensitized solar cells.
    Yu H; Zhang S; Zhao H; Zhang H
    Phys Chem Chem Phys; 2010 Jul; 12(25):6625-31. PubMed ID: 20424787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells.
    Kim B; Park SW; Kim JY; Yoo K; Lee JA; Lee MW; Lee DK; Kim JY; Kim B; Kim H; Han S; Son HJ; Ko MJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5201-7. PubMed ID: 23679678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes.
    Liu DW; Cheng IC; Chen JZ; Chen HW; Ho KC; Chiang CC
    Opt Express; 2012 Mar; 20 Suppl 2():A168-76. PubMed ID: 22418665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells.
    Dai H; Zhou Y; Liu Q; Li Z; Bao C; Yu T; Zhou Z
    Nanoscale; 2012 Sep; 4(17):5454-60. PubMed ID: 22842825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells.
    Ambade SB; Ambade RB; Mane RS; Lee GW; Shaikh SF; Patil SA; Joo OS; Han SH; Lee SH
    Chem Commun (Camb); 2013 Apr; 49(28):2921-3. PubMed ID: 23459589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.
    Roh DK; Chi WS; Ahn SH; Jeon H; Kim JH
    ChemSusChem; 2013 Aug; 6(8):1384-91. PubMed ID: 23893968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.
    Tai Q; Chen B; Guo F; Xu S; Hu H; Sebo B; Zhao XZ
    ACS Nano; 2011 May; 5(5):3795-9. PubMed ID: 21469717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.
    Vega-Poot AG; Macías-Montero M; Idígoras J; Borrás A; Barranco A; Gonzalez-Elipe AR; Lizama-Tzec FI; Oskam G; Anta JA
    Chemphyschem; 2014 Apr; 15(6):1088-97. PubMed ID: 24729526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks.
    Williams VO; Jeong NC; Prasittichai C; Farha OK; Pellin MJ; Hupp JT
    ACS Nano; 2012 Jul; 6(7):6185-96. PubMed ID: 22721529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells.
    Yang Z; Gao S; Li T; Liu FQ; Ren Y; Xu T
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4419-27. PubMed ID: 22834639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cis-dichloro-bis(4,4'-dicarboxy-2,2-bipyridine)osmium(II)-modified optically transparent electrodes: application as cathodes in stacked dye-sensitized solar cells.
    Scott MJ; Nelson JJ; Caramori S; Bignozzi CA; Elliott CM
    Inorg Chem; 2007 Nov; 46(24):10071-8. PubMed ID: 17975889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent modification of photoanodes for stable dye-sensitized solar cells.
    Luitel T; Zamborini FP
    Langmuir; 2013 Nov; 29(44):13582-94. PubMed ID: 24087979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties.
    Kim JY; Noh JH; Zhu K; Halverson AF; Neale NR; Park S; Hong KS; Frank AJ
    ACS Nano; 2011 Apr; 5(4):2647-56. PubMed ID: 21395234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic CeO2 nanoparticles as mirror-like scattering layers for efficient light harvesting in dye-sensitized solar cells.
    Yu H; Bai Y; Zong X; Tang F; Lu GQ; Wang L
    Chem Commun (Camb); 2012 Jul; 48(59):7386-8. PubMed ID: 22715464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.