BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24557133)

  • 1. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences.
    Halpin A; Johnson PJ; Tempelaar R; Murphy RS; Knoester J; Jansen TL; Miller RJ
    Nat Chem; 2014 Mar; 6(3):196-201. PubMed ID: 24557133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
    Fujihashi Y; Fleming GR; Ishizaki A
    J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.
    Ferretti M; Novoderezhkin VI; Romero E; Augulis R; Pandit A; Zigmantas D; van Grondelle R
    Phys Chem Chem Phys; 2014 Jun; 16(21):9930-9. PubMed ID: 24430275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibronic models for nonlinear spectroscopy simulations.
    Bašinskaitė E; Butkus V; Abramavicius D; Valkunas L
    Photosynth Res; 2014 Jul; 121(1):95-106. PubMed ID: 24740300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment-protein complexes.
    Higgins JS; Allodi MA; Lloyd LT; Otto JP; Sohail SH; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of long-lived coherences in light-harvesting complexes.
    Christensson N; Kauffmann HF; Pullerits T; Mančal T
    J Phys Chem B; 2012 Jun; 116(25):7449-54. PubMed ID: 22642682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards quantification of vibronic coupling in photosynthetic antenna complexes.
    Singh VP; Westberg M; Wang C; Dahlberg PD; Gellen T; Gardiner AT; Cogdell RJ; Engel GS
    J Chem Phys; 2015 Jun; 142(21):212446. PubMed ID: 26049466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling electronic and vibronic coherences in two-dimensional echo spectra.
    Kreisbeck C; Kramer T; Aspuru-Guzik A
    J Phys Chem B; 2013 Aug; 117(32):9380-5. PubMed ID: 23879880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy.
    Yuen-Zhou J; Krich JJ; Aspuru-Guzik A
    J Chem Phys; 2012 Jun; 136(23):234501. PubMed ID: 22779600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.
    Bai S; Song K; Shi Q
    J Phys Chem Lett; 2015 May; 6(10):1954-60. PubMed ID: 26263276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering coherence among excited states in synthetic heterodimer systems.
    Hayes D; Griffin GB; Engel GS
    Science; 2013 Jun; 340(6139):1431-4. PubMed ID: 23599263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes.
    Caram JR; Engel GS
    Faraday Discuss; 2011; 153():93-104; discussion 189-212. PubMed ID: 22452075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer.
    Sohail SH; Otto JP; Cunningham PD; Kim YC; Wood RE; Allodi MA; Higgins JS; Melinger JS; Engel GS
    Chem Sci; 2020 Jul; 11(32):8546-8557. PubMed ID: 34123114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer.
    Higgins JS; Lloyd LT; Sohail SH; Allodi MA; Otto JP; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33688046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy.
    Caycedo-Soler F; Mattioni A; Lim J; Renger T; Huelga SF; Plenio MB
    Nat Commun; 2022 May; 13(1):2912. PubMed ID: 35614049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes.
    Womick JM; Moran AM
    J Phys Chem B; 2011 Feb; 115(6):1347-56. PubMed ID: 21268650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From coherent to vibronic light harvesting in photosynthesis.
    Jumper CC; Rafiq S; Wang S; Scholes GD
    Curr Opin Chem Biol; 2018 Dec; 47():39-46. PubMed ID: 30077962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes.
    Jumper CC; van Stokkum IHM; Mirkovic T; Scholes GD
    J Phys Chem B; 2018 Jun; 122(24):6328-6340. PubMed ID: 29847127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.