These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24557153)

  • 41. Cr
    Du H; Guo X; Kong RM; Qu F
    Chem Commun (Camb); 2018 Nov; 54(91):12848-12851. PubMed ID: 30374491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mn
    Wu X; Xia L; Wang Y; Lu W; Liu Q; Shi X; Sun X
    Small; 2018 Nov; 14(48):e1803111. PubMed ID: 30334346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomically dispersed Au
    Wang X; Wang W; Qiao M; Wu G; Chen W; Yuan T; Xu Q; Chen M; Zhang Y; Wang X; Wang J; Ge J; Hong X; Li Y; Wu Y; Li Y
    Sci Bull (Beijing); 2018 Oct; 63(19):1246-1253. PubMed ID: 36658862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H
    Milton RD; Cai R; Abdellaoui S; Leech D; De Lacey AL; Pita M; Minteer SD
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2680-2683. PubMed ID: 28156040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient and durable N
    Zhu X; Liu Z; Liu Q; Luo Y; Shi X; Asiri AM; Wu Y; Sun X
    Chem Commun (Camb); 2018 Oct; 54(80):11332-11335. PubMed ID: 30239537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach.
    Felix JD; Elliott EM; Gish TJ; McConnell LL; Shaw SL
    Rapid Commun Mass Spectrom; 2013 Oct; 27(20):2239-46. PubMed ID: 24019189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neighbouring group processes in the deamination of protonated phenylalanine derivatives.
    Lioe H; O'Hair RA
    Org Biomol Chem; 2005 Oct; 3(20):3618-28. PubMed ID: 16211098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N
    Xie H; Geng Q; Li X; Wang T; Luo Y; Alshehri AA; Alzahrani KA; Li B; Wang Z; Mao J
    Chem Commun (Camb); 2019 Sep; 55(72):10717-10720. PubMed ID: 31429442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A perovskite La
    Yu J; Li C; Li B; Zhu X; Zhang R; Ji L; Tang D; Asiri AM; Sun X; Li Q; Liu S; Luo Y
    Chem Commun (Camb); 2019 May; 55(45):6401-6404. PubMed ID: 31094366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ambient N
    Liu Q; Zhang X; Zhang B; Luo Y; Cui G; Xie F; Sun X
    Nanoscale; 2018 Aug; 10(30):14386-14389. PubMed ID: 30027985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers.
    Peng X; Liu HX; Zhang Y; Huang ZQ; Yang L; Jiang Y; Wang X; Zheng L; Chang C; Au CT; Jiang L; Li J
    Chem Sci; 2021 Apr; 12(20):7125-7137. PubMed ID: 34123340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.
    GarcĂ­a S; Pis JJ; Rubiera F; Pevida C
    Langmuir; 2013 May; 29(20):6042-52. PubMed ID: 23617579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.
    Wang J; Yu L; Hu L; Chen G; Xin H; Feng X
    Nat Commun; 2018 May; 9(1):1795. PubMed ID: 29765053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering.
    Wang H; Wang L; Wang Q; Ye S; Sun W; Shao Y; Jiang Z; Qiao Q; Zhu Y; Song P; Li D; He L; Zhang X; Yuan J; Wu T; Ozin GA
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12360-12364. PubMed ID: 29923667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Temperature and H Flux on the NH
    Ripepi D; Schreuders H; Mulder FM
    ChemSusChem; 2023 Jul; 16(13):e202300460. PubMed ID: 37130354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential.
    Wang M; Liu S; Qian T; Liu J; Zhou J; Ji H; Xiong J; Zhong J; Yan C
    Nat Commun; 2019 Jan; 10(1):341. PubMed ID: 30664636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancement of NH
    Talukdar B; Kuo TC; Sneed BT; Lyu LM; Lin HM; Chuang YC; Cheng MJ; Kuo CH
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51839-51848. PubMed ID: 33845573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions.
    Zhang X; Kong RM; Du H; Xia L; Qu F
    Chem Commun (Camb); 2018 May; 54(42):5323-5325. PubMed ID: 29736524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.
    Hirakawa H; Hashimoto M; Shiraishi Y; Hirai T
    J Am Chem Soc; 2017 Aug; 139(31):10929-10936. PubMed ID: 28712297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex.
    Xin X; Douair I; Zhao Y; Wang S; Maron L; Zhu C
    Natl Sci Rev; 2023 Feb; 10(2):nwac144. PubMed ID: 36950222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.