BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24557413)

  • 21. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lab-on-Chip for fast 3D particle tracking in living cells.
    Hajjoul H; Kocanova S; Lassadi I; Bystricky K; Bancaud A
    Lab Chip; 2009 Nov; 9(21):3054-8. PubMed ID: 19823719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering biological gradients.
    Sardelli L; Pacheco DP; Zorzetto L; Rinoldi C; Święszkowski W; Petrini P
    J Appl Biomater Funct Mater; 2019; 17(1):2280800019829023. PubMed ID: 30803308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.
    Zhu W; Li J; Liu J
    Biomed Microdevices; 2013 Oct; 15(5):781-91. PubMed ID: 23604696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-throughput microfluidic assay to study neurite response to growth factor gradients.
    Kothapalli CR; van Veen E; de Valence S; Chung S; Zervantonakis IK; Gertler FB; Kamm RD
    Lab Chip; 2011 Feb; 11(3):497-507. PubMed ID: 21107471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing stem cell research with microtechnologies: opportunities and challenges.
    Toh YC; Blagović K; Voldman J
    Integr Biol (Camb); 2010 Aug; 2(7-8):305-25. PubMed ID: 20593104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
    Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M
    Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The future of the patient-specific Body-on-a-chip.
    Williamson A; Singh S; Fernekorn U; Schober A
    Lab Chip; 2013 Sep; 13(18):3471-80. PubMed ID: 23685915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research highlights: microfluidic-enabled single-cell epigenetics.
    Dhar M; Khojah R; Tay A; Di Carlo D
    Lab Chip; 2015 Nov; 15(21):4109-13. PubMed ID: 26405849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform.
    Geng T; Bao N; Litt MD; Glaros TG; Li L; Lu C
    Lab Chip; 2011 Sep; 11(17):2842-8. PubMed ID: 21750827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous separation of cells and particles in microfluidic systems.
    Lenshof A; Laurell T
    Chem Soc Rev; 2010 Mar; 39(3):1203-17. PubMed ID: 20179832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organ-on-a-chip devices advance to market.
    Zhang B; Radisic M
    Lab Chip; 2017 Jul; 17(14):2395-2420. PubMed ID: 28617487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial microorgans: a microfluidic tool for in vitro assessment of toxicity.
    Schütte J; Stelzle M
    Bioanalysis; 2011 Nov; 3(21):2373-5. PubMed ID: 22074276
    [No Abstract]   [Full Text] [Related]  

  • 38. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications.
    Balu B; Berry AD; Hess DW; Breedveld V
    Lab Chip; 2009 Nov; 9(21):3066-75. PubMed ID: 19823721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.
    Didar TF; Tabrizian M
    Lab Chip; 2012 Nov; 12(21):4363-71. PubMed ID: 22907392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-chip investigation of cell-drug interactions.
    Zheng XT; Yu L; Li P; Dong H; Wang Y; Liu Y; Li CM
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1556-74. PubMed ID: 23428898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.