These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24557691)

  • 1. An efficient finite element approach for modeling fibrotic clefts in the heart.
    Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Ahammer H; Hofer E; Plank G
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):900-10. PubMed ID: 24557691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element approach for modeling micro-structural discontinuities in the heart.
    Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Hofer E; Plank G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():437-40. PubMed ID: 22254342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based models of cardiac structure in health and disease.
    Vadakkumpadan F; Arevalo H; Prassl AJ; Chen J; Kickinger F; Kohl P; Plank G; Trayanova N
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(4):489-506. PubMed ID: 20582162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
    Trew M; Le Grice I; Smaill B; Pullan A
    Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.
    Bishop MJ; Plank G; Burton RA; Schneider JE; Gavaghan DJ; Grau V; Kohl P
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H699-718. PubMed ID: 19933417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional finite-difference bidomain modeling of homogeneous cardiac tissue on a data-parallel computer.
    Saleheen HI; Claessen PD; Ng KT
    IEEE Trans Biomed Eng; 1997 Feb; 44(2):200-4. PubMed ID: 9214799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries.
    Biasi N; Seghetti P; Mercati M; Tognetti A
    PLoS One; 2023; 18(6):e0286577. PubMed ID: 37294777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational hemodynamic modeling based on transesophageal echocardiographic imaging.
    Sprouse C; Yuh D; Abraham T; Burlina P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3649-52. PubMed ID: 19963593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart.
    Hooks DA; Tomlinson KA; Marsden SG; LeGrice IJ; Smaill BH; Pullan AJ; Hunter PJ
    Circ Res; 2002 Aug; 91(4):331-8. PubMed ID: 12193466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats.
    David Gomez A; Bull DA; Hsu EW
    J Biomech Eng; 2015 Oct; 137(10):101010. PubMed ID: 26299478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A localized meshless approach for modeling spatial-temporal calcium dynamics in ventricular myocytes.
    Yao G; Yu Z
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):187-204. PubMed ID: 22408720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
    Prassl AJ; Kickinger F; Ahammer H; Grau V; Schneider JE; Hofer E; Vigmond EJ; Trayanova NA; Plank G
    IEEE Trans Biomed Eng; 2009 May; 56(5):1318-30. PubMed ID: 19203877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus protocol determines the most computationally efficient preconditioner for the bidomain equations.
    Bernabeu MO; Pathmanathan P; Pitt-Francis J; Kay D
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2806-15. PubMed ID: 20876005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A meshfree method for simulating myocardial electrical activity.
    Zhang H; Ye H; Huang W
    Comput Math Methods Med; 2012; 2012():936243. PubMed ID: 22997540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of two quasi-static computational models for assessment of intra-myocardial injection as a therapeutic strategy for heart failure.
    Fan Y; Ronan W; Teh I; Schneider JE; Varela CE; Whyte W; McHugh P; Leen S; Roche E
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3213. PubMed ID: 31062508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.
    Chamakuri N; Kunisch K; Plank G
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02742. PubMed ID: 26249168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.