These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24557697)

  • 41. Mechanisms for pattern specificity of deep-brain stimulation in Parkinson's disease.
    Velarde OM; Mato G; Dellavale D
    PLoS One; 2017; 12(8):e0182884. PubMed ID: 28813460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson's disease.
    Kopell BH; Rezai AR; Chang JW; Vitek JL
    Mov Disord; 2006 Jun; 21 Suppl 14():S238-46. PubMed ID: 16810674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between oscillations in the basal ganglia and synchronization of cortical activity.
    Cassim F; Labyt E; Devos D; Defebvre L; Destée A; Derambure P
    Epileptic Disord; 2002 Dec; 4 Suppl 3():S31-45. PubMed ID: 12495873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clinical outcome of deep brain stimulation for Parkinson's disease.
    Deuschl G; Paschen S; Witt K
    Handb Clin Neurol; 2013; 116():107-28. PubMed ID: 24112889
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Parkinson's disease.
    Benninger DH
    Handb Clin Neurol; 2013; 116():469-83. PubMed ID: 24112916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuronal oscillations in Parkinson's disease.
    Witcher M; Moran R; Tatter SB; Laxton AW
    Front Biosci (Landmark Ed); 2014 Jun; 19(8):1291-9. PubMed ID: 24896351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients.
    Prescott IA; Dostrovsky JO; Moro E; Hodaie M; Lozano AM; Hutchison WD
    Brain; 2009 Feb; 132(Pt 2):309-18. PubMed ID: 19050033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chapter 33: the history of movement disorders.
    Lanska DJ
    Handb Clin Neurol; 2010; 95():501-46. PubMed ID: 19892136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.
    Su F; Wang J; Niu S; Li H; Deng B; Liu C; Wei X
    Neural Netw; 2018 Feb; 98():283-295. PubMed ID: 29291546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insights offered by a computational model of deep brain stimulation.
    Modolo J; Mosekilde E; Beuter A
    J Physiol Paris; 2007; 101(1-3):56-63. PubMed ID: 18042354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical Modeling for Description of Oscillation Suppression Induced by Deep Brain Stimulation.
    Liu C; Zhou C; Wang J; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1649-1658. PubMed ID: 29994400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation.
    Fasano A; Daniele A; Albanese A
    Lancet Neurol; 2012 May; 11(5):429-42. PubMed ID: 22516078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease.
    Foffani G; Ardolino G; Egidi M; Caputo E; Bossi B; Priori A
    Brain Res Bull; 2006 Mar; 69(2):123-30. PubMed ID: 16533660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neurophysiology of deep brain stimulation.
    Rosa M; Giannicola G; Marceglia S; Fumagalli M; Barbieri S; Priori A
    Int Rev Neurobiol; 2012; 107():23-55. PubMed ID: 23206677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson's disease.
    Herzog J; Weiss PH; Assmus A; Wefer B; Seif C; Braun PM; Herzog H; Volkmann J; Deuschl G; Fink GR
    Brain; 2006 Dec; 129(Pt 12):3366-75. PubMed ID: 17077105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease.
    Lu M; Wei X; Che Y; Wang J; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):339-349. PubMed ID: 31715567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling.
    McIntyre CC; Thakor NV
    Crit Rev Biomed Eng; 2002; 30(4-6):249-81. PubMed ID: 12739751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational neurostimulation for Parkinson's disease.
    Little S; Bestmann S
    Prog Brain Res; 2015; 222():163-90. PubMed ID: 26541381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting the effects of deep brain stimulation using a reduced coupled oscillator model.
    Weerasinghe G; Duchet B; Cagnan H; Brown P; Bick C; Bogacz R
    PLoS Comput Biol; 2019 Aug; 15(8):e1006575. PubMed ID: 31393880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive.
    Fiore VG; Rigoli F; Stenner MP; Zaehle T; Hirth F; Heinze HJ; Dolan RJ
    Sci Rep; 2016 Mar; 6():23327. PubMed ID: 27004463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.