BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24557913)

  • 1. A southern blot protocol to detect chimeric nuclease-mediated gene repair.
    Rocca CJ; Abdul-Razak HH; Holmes MC; Gregory PD; Yáñez-Muñoz RJ
    Methods Mol Biol; 2014; 1114():325-38. PubMed ID: 24557913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lentiviral vectors encoding zinc-finger nucleases specific for the model target locus HPRT1.
    Pelascini LP; Gonçalves MA
    Methods Mol Biol; 2014; 1114():181-99. PubMed ID: 24557904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Donor plasmid design for codon and single base genome editing using zinc finger nucleases.
    Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():219-29. PubMed ID: 25408408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene targeting in plants: 25 years later.
    Puchta H; Fauser F
    Int J Dev Biol; 2013; 57(6-8):629-37. PubMed ID: 24166445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.
    Cai Y; Bak RO; Mikkelsen JG
    Elife; 2014 Apr; 3():e01911. PubMed ID: 24843011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases.
    Kawai N; Ochiai H; Sakuma T; Yamada L; Sawada H; Yamamoto T; Sasakura Y
    Dev Growth Differ; 2012 Jun; 54(5):535-45. PubMed ID: 22640377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN).
    Petersen B; Niemann H
    Chromosome Res; 2015 Feb; 23(1):7-15. PubMed ID: 25596823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclease-mediated genome editing: At the front-line of functional genomics technology.
    Sakuma T; Woltjen K
    Dev Growth Differ; 2014 Jan; 56(1):2-13. PubMed ID: 24387662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of off-target cleavage sites of zinc finger nucleases and TAL effector nucleases using predictive models.
    Fine EJ; Cradick TJ; Bao G
    Methods Mol Biol; 2014; 1114():371-83. PubMed ID: 24557916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene editing using ssODNs with engineered endonucleases.
    Chen F; Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing the Trypanosoma cruzi genome with zinc finger nucleases.
    Burle-Caldas GA; Grazielle-Silva V; Soares-Simões M; Schumann Burkard G; Roditi I; DaRocha WD; Teixeira SM
    Mol Biochem Parasitol; 2017 Mar; 212():28-32. PubMed ID: 28108186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technology developments in biological tools for targeted genome surgery.
    Teimourian S; Abdollahzadeh R
    Biotechnol Lett; 2015 Jan; 37(1):29-39. PubMed ID: 25257583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells.
    Mori T; Mori K; Tobimatsu T; Sera T
    Bioorg Med Chem Lett; 2014 Feb; 24(3):813-6. PubMed ID: 24412074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient design and assembly of custom TALENs using the Golden Gate platform.
    Cermak T; Starker CG; Voytas DF
    Methods Mol Biol; 2015; 1239():133-59. PubMed ID: 25408404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Doxycycline-Inducible System for Genetic Correction of iPSC Disease Models.
    Sim X; Cardenas-Diaz FL; French DL; Gadue P
    Methods Mol Biol; 2016; 1353():13-23. PubMed ID: 25630922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.
    Overlack N; Goldmann T; Wolfrum U; Nagel-Wolfrum K
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):4140-6. PubMed ID: 22661463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
    Jabalameli HR; Zahednasab H; Karimi-Moghaddam A; Jabalameli MR
    Gene; 2015 Mar; 558(1):1-5. PubMed ID: 25536166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus.
    Joglekar AV; Hollis RP; Kuftinec G; Senadheera S; Chan R; Kohn DB
    Mol Ther; 2013 Sep; 21(9):1705-17. PubMed ID: 23857176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone deacetylase inhibition rescues gene knockout levels achieved with integrase-defective lentiviral vectors encoding zinc-finger nucleases.
    Pelascini LP; Maggio I; Liu J; Holkers M; Cathomen T; Gonçalves MA
    Hum Gene Ther Methods; 2013 Dec; 24(6):399-411. PubMed ID: 24059449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.