These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2455800)

  • 1. Changes in the surface pH of voltage-clamped snail neurones apparently caused by H+ fluxes through a channel.
    Thomas RC
    J Physiol; 1988 Apr; 398():313-27. PubMed ID: 2455800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular acidification at the surface of depolarized voltage-clamped snail neurones detected with eccentric combination pH microelectrodes.
    Thomas RC
    Can J Physiol Pharmacol; 1987 May; 65(5):1001-5. PubMed ID: 3621027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.
    Szatkowski MS
    J Physiol; 1989 Feb; 409():103-20. PubMed ID: 2555474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-dependent intracellular pH in Helix aspersa neurones.
    Meech RW; Thomas RC
    J Physiol; 1987 Sep; 390():433-52. PubMed ID: 2450997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic intracellular H+ buffering power of snail neurones.
    Szatkowski MS; Thomas RC
    J Physiol; 1989 Feb; 409():89-101. PubMed ID: 2585301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones.
    Thomas RC; Meech RW
    Nature; 1982 Oct; 299(5886):826-8. PubMed ID: 7133121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres.
    Kaila K; Saarikoski J; Voipio J
    J Physiol; 1990 Aug; 427():241-60. PubMed ID: 1698980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton channels in snail neurons studied with surface pH glass microelectrodes.
    Thomas RC
    Ciba Found Symp; 1988; 139():168-83. PubMed ID: 2462479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurones.
    Willoughby D; Thomas RC; Schwiening CJ
    Pflugers Arch; 1998 Jul; 436(4):615-22. PubMed ID: 9683736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of calcium injection on the intracellular sodium and pH of snail neurones.
    Meech RW; Thomas RC
    J Physiol; 1977 Mar; 265(3):867-79. PubMed ID: 16126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech.
    Deitmer JW; Schlue WR
    J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus.
    Chesler M
    J Physiol; 1986 Dec; 381():241-61. PubMed ID: 3040962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.
    J Physiol; 1977 Jun; 267(3):791-810. PubMed ID: 17740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of pH and membrane potential in rat dorsal vagal motoneurons during normoxia and hypoxia: a comparison in bicarbonate and HEPES buffers.
    Cowan AI; Martin RL
    J Neurophysiol; 1995 Dec; 74(6):2713-21. PubMed ID: 8747226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.
    Trapp S; Lückermann M; Brooks PA; Ballanyi K
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):695-710. PubMed ID: 8930837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane currents of internally perfused neurones of the snail, Lymnaea stagnalis, at low intracellular pH.
    Byerly L; Moody WJ
    J Physiol; 1986 Jul; 376():477-91. PubMed ID: 2432237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH and contraction of isolated rabbit and cat papillary muscle: effect of superfusate buffering.
    Vanheel B; de Hemptinne A; Leusen I
    J Mol Cell Cardiol; 1985 Jan; 17(1):23-9. PubMed ID: 3989871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton currents in human granulocytes: regulation by membrane potential and intracellular pH.
    Demaurex N; Grinstein S; Jaconi M; Schlegel W; Lew DP; Krause KH
    J Physiol; 1993 Jul; 466():329-44. PubMed ID: 7692041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular H+ inactivation of Na(+)-H+ exchange in the sheep cardiac Purkinje fibre.
    Vaughan-Jones RD; Wu ML
    J Physiol; 1990 Sep; 428():441-66. PubMed ID: 2172524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of pHi regulation by locust neurones in isolated ganglia: a microelectrode study.
    Schwiening CJ; Thomas RC
    J Physiol; 1992 Feb; 447():693-709. PubMed ID: 1317439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.