These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 24558800)
1. Response of multiple generations of semilooper, Achaea janata feeding on castor to elevated CO2. Rao MS; Srinivas K; Vanaja M; Manimanjari D; Rama Rao CA; Venkateswarlu B J Environ Biol; 2013 Sep; 34(5):877-83. PubMed ID: 24558800 [TBL] [Abstract][Full Text] [Related]
2. Direct Effects of Elevated CO2 Levels on the Fitness Performance of Asian Corn Borer (Lepidoptera: Crambidae) for Multigenerations. Xie H; Zhao L; Yang Q; Wang Z; He K Environ Entomol; 2015 Aug; 44(4):1250-7. PubMed ID: 26314071 [TBL] [Abstract][Full Text] [Related]
3. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Foss AR; Mattson WJ; Trier TM Environ Entomol; 2013 Jun; 42(3):503-14. PubMed ID: 23726059 [TBL] [Abstract][Full Text] [Related]
4. Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Srinivasa Rao M; Manimanjari D; Vanaja M; Rama Rao CA; Srinivas K; Rao VU; Venkateswarlu B J Insect Sci; 2012; 12():103. PubMed ID: 23437971 [TBL] [Abstract][Full Text] [Related]
5. Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Knepp RG; Hamilton JG; Zangerl AR; Berenbaum MR; DeLucia EH Environ Entomol; 2007 Jun; 36(3):609-17. PubMed ID: 17540072 [TBL] [Abstract][Full Text] [Related]
6. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls under elevated CO2. Wu G; Chen FJ; Sun YC; Ge F J Environ Sci (China); 2007; 19(11):1318-25. PubMed ID: 18232225 [TBL] [Abstract][Full Text] [Related]
7. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. Murray TJ; Ellsworth DS; Tissue DT; Riegler M Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696 [TBL] [Abstract][Full Text] [Related]
8. Responses of leaf beetle larvae to elevated [CO₂] and temperature depend on Eucalyptus species. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M Oecologia; 2015 Feb; 177(2):607-17. PubMed ID: 25526844 [TBL] [Abstract][Full Text] [Related]
9. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Williams RS; Lincoln DE; Norby RJ Oecologia; 2003 Sep; 137(1):114-22. PubMed ID: 12844253 [TBL] [Abstract][Full Text] [Related]
10. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Yasur J; Rani PU Chemosphere; 2015 Apr; 124():92-102. PubMed ID: 25482980 [TBL] [Abstract][Full Text] [Related]
11. Influence of CO2 and Temperature on Metabolism and Development of Helicoverpa armigera (Noctuidae: Lepidoptera). Akbar SM; Pavani T; Nagaraja T; Sharma HC Environ Entomol; 2016 Feb; 45(1):229-36. PubMed ID: 26363173 [TBL] [Abstract][Full Text] [Related]
12. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae). Yifei Z; Yang D; Guijun W; Bin L; Guangnan X; Fajun C Environ Entomol; 2018 Aug; 47(4):848-856. PubMed ID: 29701817 [TBL] [Abstract][Full Text] [Related]
13. Host plant-mediated effects of elevated CO Kumar L; Sushilkumar ; Choudhary JS; Kumar B Bull Entomol Res; 2021 Feb; 111(1):111-119. PubMed ID: 32686624 [TBL] [Abstract][Full Text] [Related]
14. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant. Tu KY; Tsai SF; Guo TW; Lin HH; Yang ZW; Liao CT; Chuang WP Environ Entomol; 2018 Aug; 47(4):857-866. PubMed ID: 29762698 [TBL] [Abstract][Full Text] [Related]
15. Temperature- and CO2-dependent life table parameters of Spodoptera litura (Noctuidae: Lepidoptera) on sunflower and prediction of pest scenarios. Manimanjari D; Srinivasa Rao M; Swathi P; Rama Rao CA; Vanaja M; Maheswari M J Insect Sci; 2014; 14():. PubMed ID: 25528748 [TBL] [Abstract][Full Text] [Related]
16. Selection on herbivore life-history traits by the first and third trophic levels: the devil and the deep blue sea revisited. Lill JT Evolution; 2001 Nov; 55(11):2236-47. PubMed ID: 11794783 [TBL] [Abstract][Full Text] [Related]
17. Will chemical defenses become more effective against specialist herbivores under elevated CO2? Landosky JM; Karowe DN Glob Chang Biol; 2014 Oct; 20(10):3159-76. PubMed ID: 24832554 [TBL] [Abstract][Full Text] [Related]
18. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Murray TJ; Tissue DT; Ellsworth DS; Riegler M Oecologia; 2013 Apr; 171(4):1025-35. PubMed ID: 23053228 [TBL] [Abstract][Full Text] [Related]
19. Impact of elevated CO2 and increased temperature on Japanese beetle herbivory. Niziolek OK; Berenbaum MR; Delucia EH Insect Sci; 2013 Aug; 20(4):513-23. PubMed ID: 23955947 [TBL] [Abstract][Full Text] [Related]
20. A field experiment with elevated atmospheric CO2-mediated changes to C4 crop-herbivore interactions. Xie H; Liu K; Sun D; Wang Z; Lu X; He K Sci Rep; 2015 Sep; 5():13923. PubMed ID: 26381457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]