These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 24558800)
41. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Levesque KR; Levesque KR; Fortin M; Mauffette Y Bull Entomol Res; 2002 Apr; 92(2):127-36. PubMed ID: 12020370 [TBL] [Abstract][Full Text] [Related]
42. Influence of different types of Phyllostachys pubescens (Poales: Poaceae) leaves on population parameters of Pantana phyllostachysae (Lepidoptera: Lymantriidae) and parasitic effects of Beauveria bassiana (Moniliales: Moniliaceae). Su J; Zhang FP; Huang WL; Chen DL; Chen SL J Insect Sci; 2015; 15(1):. PubMed ID: 25843592 [TBL] [Abstract][Full Text] [Related]
43. Impact of differential feeding on the growth and development of Helicoverpa armigera (Hubner). Rao KP; Radhakrishnaiah K; Sudhakar K J Environ Biol; 2008 Nov; 29(6):929-32. PubMed ID: 19297994 [TBL] [Abstract][Full Text] [Related]
44. Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? Ainsworth EA; Rogers A; Leakey AD; Heady LE; Gibon Y; Stitt M; Schurr U J Exp Bot; 2007; 58(3):579-91. PubMed ID: 17158509 [TBL] [Abstract][Full Text] [Related]
45. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580 [TBL] [Abstract][Full Text] [Related]
46. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat]. Zhang XC; Yu XF; Ma YF Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023 [TBL] [Abstract][Full Text] [Related]
47. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae). Rizvi SZ; Raman A; Wheatley WM; Cook G Insect Sci; 2016 Apr; 23(2):313-25. PubMed ID: 25420720 [TBL] [Abstract][Full Text] [Related]
48. Influence of elevated CO Li Z; Parajulee MN; Chen F PeerJ; 2018; 6():e5138. PubMed ID: 30002971 [TBL] [Abstract][Full Text] [Related]
49. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
50. Physiological Effects of Citrus Leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) Larval Feeding on Photosynthetic and Gaseous Exchange Rates in Citrus. Arshad M; Ullah MI; Qureshi JA; Afzal M J Econ Entomol; 2018 Sep; 111(5):2264-2271. PubMed ID: 29878210 [TBL] [Abstract][Full Text] [Related]
51. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Zavala JA; Nabity PD; DeLucia EH Annu Rev Entomol; 2013; 58():79-97. PubMed ID: 22974069 [TBL] [Abstract][Full Text] [Related]
52. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Shimono H; Nakamura H; Hasegawa T; Okada M Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676 [TBL] [Abstract][Full Text] [Related]
53. Effect of elevated CO Boutaleb Joutei A; Roy J; Van Impe G; Lebrun P Oecologia; 2000 Apr; 123(1):75-81. PubMed ID: 28308746 [TBL] [Abstract][Full Text] [Related]
54. Utilization of blueberry by the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae): survival, development, and larval performance. Calvo D; Molina JM J Econ Entomol; 2004 Jun; 97(3):957-63. PubMed ID: 15279278 [TBL] [Abstract][Full Text] [Related]
55. Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina. Łukowski A; Giertych MJ; Walczak U; Baraniak E; Karolewski P Bull Entomol Res; 2017 Apr; 107(2):208-216. PubMed ID: 27628311 [TBL] [Abstract][Full Text] [Related]
56. Intercropping for management of insect pests of castor, Ricinus communis, in the semi-arid tropics of India. Rao MS; Rama Rao CA; Srinivas K; Pratibha G; Vidya Sekhar SM; Sree Vani G; Venkateswarlu B J Insect Sci; 2012; 12():14. PubMed ID: 22934569 [TBL] [Abstract][Full Text] [Related]
57. Increased insect herbivore performance under elevated CO Johnson SN; Waterman JM; Hall CR Sci Rep; 2020 Sep; 10(1):14553. PubMed ID: 32883958 [TBL] [Abstract][Full Text] [Related]
58. Molecular and in Silico Characterization of Achaea janata Granulovirus Granulin Gene. Kumar PN; Prasad YG; Prabhakar M; Shanker AK; Bhanu D Interdiscip Sci; 2017 Dec; 9(4):528-539. PubMed ID: 26984814 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of premature leaf abscission by a leafminer and its adaptive significance. Oishi M; Sato H Environ Entomol; 2007 Dec; 36(6):1504-11. PubMed ID: 18284779 [TBL] [Abstract][Full Text] [Related]
60. Role of corpus allatum on the modulation of feeding rhythm in the semilooper caterpillar, Achaea janata (L). Abraham G; Muraleedharan D Chronobiol Int; 1990; 7(5-6):419-24. PubMed ID: 2097075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]