These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 2455891)

  • 1. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes.
    Christensen B; Fink J; Merrifield RB; Mauzerall D
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5072-6. PubMed ID: 2455891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae.
    Hultmark D; Engström A; Bennich H; Kapur R; Boman HG
    Eur J Biochem; 1982 Sep; 127(1):207-17. PubMed ID: 7140755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia.
    Boman HG; Faye I; von Hofsten P; Kockum K; Lee JY; Xanthopoulos KG; Bennich H; Engström A; Merrifield RB; Andreu D
    Dev Comp Immunol; 1985; 9(3):551-8. PubMed ID: 3840100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi.
    Qu Z; Steiner H; Engström A; Bennich H; Boman HG
    Eur J Biochem; 1982 Sep; 127(1):219-24. PubMed ID: 6754375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells.
    Zdybicka-Barabas A; Stączek S; Pawlikowska-Pawlęga B; Mak P; Luchowski R; Skrzypiec K; Mendyk E; Wydrych J; Gruszecki WI; Cytryńska M
    Amino Acids; 2019 Feb; 51(2):175-191. PubMed ID: 30167962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity of cecropins.
    Moore AJ; Beazley WD; Bibby MC; Devine DA
    J Antimicrob Chemother; 1996 Jun; 37(6):1077-89. PubMed ID: 8836811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids.
    Juvvadi P; Vunnam S; Merrifield EL; Boman HG; Merrifield RB
    J Pept Sci; 1996; 2(4):223-32. PubMed ID: 9231329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles.
    Gazit E; Boman A; Boman HG; Shai Y
    Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and specificity of two antibacterial proteins involved in insect immunity.
    Steiner H; Hultmark D; Engström A; Bennich H; Boman HG
    Nature; 1981 Jul; 292(5820):246-8. PubMed ID: 7019715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia.
    Gudmundsson GH; Lidholm DA; Asling B; Gan R; Boman HG
    J Biol Chem; 1991 Jun; 266(18):11510-7. PubMed ID: 1711035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-D amino acid-containing channel-forming antibiotic peptides.
    Wade D; Boman A; Wåhlin B; Drain CM; Andreu D; Boman HG; Merrifield RB
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4761-5. PubMed ID: 1693777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly-L-aspartic acid C-terminus.
    Maaroufi H; Potvin M; Cusson M; Levesque RC
    Proteins; 2021 Sep; 89(9):1205-1215. PubMed ID: 33973678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae.
    Lockey TD; Ourth DD
    Eur J Biochem; 1996 Feb; 236(1):263-71. PubMed ID: 8617274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential.
    Efimova SS; Schagina LV; Ostroumova OS
    Langmuir; 2014 Jul; 30(26):7884-92. PubMed ID: 24969512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes.
    Cruciani RA; Barker JL; Durell SR; Raghunathan G; Guy HR; Zasloff M; Stanley EF
    Eur J Pharmacol; 1992 Aug; 226(4):287-96. PubMed ID: 1383011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion pores from magainins and related defensive peptides.
    Duclohier H
    Toxicology; 1994 Feb; 87(1-3):175-88. PubMed ID: 7512759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein.
    Pawlak M; Meseth U; Dhanapal B; Mutter M; Vogel H
    Protein Sci; 1994 Oct; 3(10):1788-805. PubMed ID: 7531528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of antimicrobial peptides.
    Merrifield RB; Merrifield EL; Juvvadi P; Andreu D; Boman HG
    Ciba Found Symp; 1994; 186():5-20; discussion 20-6. PubMed ID: 7768157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers.
    Duclohier H; Molle G; Spach G
    Biophys J; 1989 Nov; 56(5):1017-21. PubMed ID: 2481510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes.
    Kagan BL; Selsted ME; Ganz T; Lehrer RI
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):210-4. PubMed ID: 1688654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.