These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24559065)

  • 1. Density functional theory based study on cis-trans isomerism of the amide bond in homodimers of β(2,3)- and β(3)-substituted homoproline.
    Suresh Kumar NV; Singh H
    J Phys Chem A; 2014 Mar; 118(11):2120-37. PubMed ID: 24559065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3(S)-hydroxy-5-hydroxymethylproline hybrids: a computational study.
    Teklebrhan RB; Zhang K; Schreckenbach G; Schweizer F; Wetmore SD
    J Phys Chem B; 2010 Sep; 114(35):11594-602. PubMed ID: 20707355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of hydrogen bonding in homodimers and heterodimers of amide, boronic acid, and carboxylic acid, free and in encapsulation complexes.
    Tzeli D; Theodorakopoulos G; Petsalakis ID; Ajami D; Rebek J
    J Am Chem Soc; 2011 Oct; 133(42):16977-85. PubMed ID: 21923158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homochiral versus Heterochiral Trifluoromethylated Pseudoproline Containing Dipeptides: A Powerful Tool to Switch the Prolyl-Amide Bond Conformation.
    Chaume G; Simon J; Lensen N; Pytkowicz J; Brigaud T; Miclet E
    J Org Chem; 2017 Dec; 82(24):13602-13608. PubMed ID: 29141145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational preferences of non-prolyl and prolyl residues.
    Kang YK
    J Phys Chem B; 2006 Oct; 110(42):21338-48. PubMed ID: 17048963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization.
    Zhang K; Teklebrhan RB; Schreckenbach G; Wetmore S; Schweizer F
    J Org Chem; 2009 May; 74(10):3735-43. PubMed ID: 19354261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protonation of the side group in beta- and gamma-aminated proline analogues: effects on the conformational preferences.
    Flores-Ortega A; Casanovas J; Assfeld X; Alemán C
    J Org Chem; 2009 Apr; 74(8):3101-8. PubMed ID: 19296589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction.
    Thomas KM; Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Feb; 128(7):2216-7. PubMed ID: 16478167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational preferences of 4-chloroproline residues.
    Park HS; Byun BJ; Motooka D; Kawahara K; Doi M; Nakazawa T; Kobayashi Y; Kang YK
    Biopolymers; 2012 Aug; 97(8):629-41. PubMed ID: 22605554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Energies Are Not Enough: An Ion Mobility-Aided, Quantum Chemical Benchmark Analysis of H
    Beckett D; El-Baba TJ; Clemmer DE; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5406-5418. PubMed ID: 30192543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational preferences and prolyl cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs.
    Byun BJ; Kang YK
    Biopolymers; 2010 Apr; 93(4):330-9. PubMed ID: 19885922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of azaproline on Peptide conformation.
    Che Y; Marshall GR
    J Org Chem; 2004 Dec; 69(26):9030-42. PubMed ID: 15609935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution.
    Benzi C; Improta R; Scalmani G; Barone V
    J Comput Chem; 2002 Feb; 23(3):341-50. PubMed ID: 11908497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why Do
    Pros GJ; Bloomfield AJ
    J Phys Chem A; 2019 Sep; 123(35):7609-7618. PubMed ID: 31408353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental investigation of the energetics of cis-trans proline isomerization in peptide models.
    Schroeder OE; Carper E; Wind JJ; Poutsma JL; Etzkorn FA; Poutsma JC
    J Phys Chem A; 2006 May; 110(20):6522-30. PubMed ID: 16706410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides.
    Kang YK; Byun BJ
    J Comput Chem; 2010 Dec; 31(16):2915-23. PubMed ID: 20564333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of N-terminal residue stereochemistry on the prolyl amide geometry and the conformation of 5-tert-butylproline type VI beta-turn mimics.
    Halab L; Lubell WD
    J Pept Sci; 2001 Feb; 7(2):92-104. PubMed ID: 11277501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational preference and cis-trans isomerization of 4-methylproline residues.
    Kang YK; Byun BJ; Park HS
    Biopolymers; 2011 Jan; 95(1):51-61. PubMed ID: 20725948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.