These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Treewidth-based algorithms for the small parsimony problem on networks. Scornavacca C; Weller M Algorithms Mol Biol; 2022 Aug; 17(1):15. PubMed ID: 35987645 [TBL] [Abstract][Full Text] [Related]
4. Bounding the Softwired Parsimony Score of a Phylogenetic Network. Döcker J; Linz S; Wicke K Bull Math Biol; 2024 Aug; 86(10):121. PubMed ID: 39174812 [TBL] [Abstract][Full Text] [Related]
5. Reconstructible phylogenetic networks: do not distinguish the indistinguishable. Pardi F; Scornavacca C PLoS Comput Biol; 2015 Apr; 11(4):e1004135. PubMed ID: 25849429 [TBL] [Abstract][Full Text] [Related]
6. A fast tool for minimum hybridization networks. Chen ZZ; Wang L; Yamanaka S BMC Bioinformatics; 2012 Jul; 13():155. PubMed ID: 22748099 [TBL] [Abstract][Full Text] [Related]
7. A probabilistic version of Sankoff's maximum parsimony algorithm. Balogh G; Bernhart SH; Stadler PF; Schor J J Bioinform Comput Biol; 2020 Feb; 18(1):2050004. PubMed ID: 32336248 [TBL] [Abstract][Full Text] [Related]
8. Finding a most parsimonious or likely tree in a network with respect to an alignment. Kelk S; Pardi F; Scornavacca C; van Iersel L J Math Biol; 2019 Jan; 78(1-2):527-547. PubMed ID: 30121824 [TBL] [Abstract][Full Text] [Related]
9. On the elusiveness of clusters. Kelk SM; Scornavacca C; van Iersel L IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):517-34. PubMed ID: 21968961 [TBL] [Abstract][Full Text] [Related]
10. An algorithm for constructing parsimonious hybridization networks with multiple phylogenetic trees. Wu Y J Comput Biol; 2013 Oct; 20(10):792-804. PubMed ID: 24093230 [TBL] [Abstract][Full Text] [Related]
12. Algorithms for reticulate networks of multiple phylogenetic trees. Chen ZZ; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):372-84. PubMed ID: 22025766 [TBL] [Abstract][Full Text] [Related]
13. Reconstructing recombination network from sequence data: the small parsimony problem. Nguyen CT; Nguyen NB; Sung WK; Zhang L IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):394-402. PubMed ID: 17666759 [TBL] [Abstract][Full Text] [Related]
14. Embedding gene trees into phylogenetic networks by conflict resolution algorithms. Wawerka M; Dąbkowski D; Rutecka N; Mykowiecka A; Górecki P Algorithms Mol Biol; 2022 May; 17(1):11. PubMed ID: 35590416 [TBL] [Abstract][Full Text] [Related]
15. Cubic time algorithms of amalgamating gene trees and building evolutionary scenarios. Lyubetsky VA; Rubanov LI; Rusin LY; Gorbunov KY Biol Direct; 2012 Dec; 7():48. PubMed ID: 23259766 [TBL] [Abstract][Full Text] [Related]
16. Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks. Van Iersel L; Kelk S; Mnich M J Bioinform Comput Biol; 2009 Aug; 7(4):597-623. PubMed ID: 19634194 [TBL] [Abstract][Full Text] [Related]
17. On the quirks of maximum parsimony and likelihood on phylogenetic networks. Bryant C; Fischer M; Linz S; Semple C J Theor Biol; 2017 Mar; 417():100-108. PubMed ID: 28087420 [TBL] [Abstract][Full Text] [Related]
18. Combinatorial Scoring of Phylogenetic Trees and Networks Based on Homoplasy-Free Characters. Alexeev N; Alekseyev MA J Comput Biol; 2018 Nov; 25(11):1203-1219. PubMed ID: 30133318 [TBL] [Abstract][Full Text] [Related]
19. A comparison of phylogenetic network methods using computer simulation. Woolley SM; Posada D; Crandall KA PLoS One; 2008 Apr; 3(4):e1913. PubMed ID: 18398452 [TBL] [Abstract][Full Text] [Related]
20. Determining Significant Correlation Between Pairs of Extant Characters in a Small Parsimony Framework. Khandai K; Navarro-Martinez C; Smith B; Buonopane R; Byun SA; Patterson M J Comput Biol; 2022 Oct; 29(10):1132-1154. PubMed ID: 35723627 [No Abstract] [Full Text] [Related] [Next] [New Search]