These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24559215)

  • 1. Sandwich approach toward inverse opals with linear and nonlinear optical functionalities.
    Demeyer PJ; Vandendriessche S; Van Cleuvenbergen S; Carron S; Bogaerts K; Parac-Vogt TN; Verbiest T; Clays K
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3870-8. PubMed ID: 24559215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor.
    Cai Z; Teng J; Xiong Z; Li Y; Li Q; Lu X; Zhao XS
    Langmuir; 2011 Apr; 27(8):5157-64. PubMed ID: 21413750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals.
    Stein A; Wilson BE; Rudisill SG
    Chem Soc Rev; 2013 Apr; 42(7):2763-803. PubMed ID: 23079696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.
    Heo Y; Kang H; Lee JS; Oh YK; Kim SH
    Small; 2016 Jul; 12(28):3819-26. PubMed ID: 27259060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-based inverse opals: a facile and promising platform for fabrication of biocatalysts.
    Jiang Y; Cui C; Huang Y; Zhang X; Gao J
    Chem Commun (Camb); 2014 May; 50(41):5490-3. PubMed ID: 24722982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO
    Zhang Y; Li K; Su F; Cai Z; Liu J; Wu X; He H; Yin Z; Wang L; Wang B; Tian Y; Luo D; Sun XW; Liu YJ
    Opt Express; 2019 May; 27(11):15391-15398. PubMed ID: 31163736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered macroporous bimetallic nanostructures: design, characterization, and applications.
    Lu L; Eychmüller A
    Acc Chem Res; 2008 Feb; 41(2):244-53. PubMed ID: 18217722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular structure, symmetry, and shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules-in-materials.
    Radhakrishnan TP
    Acc Chem Res; 2008 Mar; 41(3):367-76. PubMed ID: 18260652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of upconversion and near infrared emission properties in CeO₂: Er³⁺, Yb³⁺ inverse opals.
    Wu H; Yang Z; Liao J; Lai S; Qiu J; Song Z; Yang Y; Zhou D; Yin Z
    Opt Express; 2013 Sep; 21(19):22186-93. PubMed ID: 24104110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconversion of inverse opals of electrically conducting doped titanium oxides and nitrides.
    Subban CV; Smith IC; Disalvo FJ
    Small; 2012 Sep; 8(18):2824-32. PubMed ID: 22807307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon structures with three-dimensional periodicity at optical wavelengths.
    Zakhidov AA; Baughman RH; Iqbal Z; Cui C; Khayrullin I; Dantas SO; Marti J; Ralchenko VG
    Science; 1998 Oct; 282(5390):897-901. PubMed ID: 9794752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid.
    Hung PS; Wang GR; Chung WA; Chiang TT; Wu PW
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32878039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.
    Collins G; Armstrong E; McNulty D; O'Hanlon S; Geaney H; O'Dwyer C
    Sci Technol Adv Mater; 2016; 17(1):563-582. PubMed ID: 27877904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection.
    Fathi F; Rashidi MR; Pakchin PS; Ahmadi-Kandjani S; Nikniazi A
    Talanta; 2021 Jan; 221():121615. PubMed ID: 33076145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold Nanoparticles in Photonic Crystals Applications: A Review.
    Venditti I
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetophotonic response of three-dimensional opals.
    Caicedo JM; Pascu O; López-García M; Canalejas V; Blanco A; López C; Fontcuberta J; Roig A; Herranz G
    ACS Nano; 2011 Apr; 5(4):2957-63. PubMed ID: 21401054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two substrate-confined sol-gel coassembled ordered macroporous silica structures with an open surface.
    Guo W; Wang M; Xia W; Dai L
    Langmuir; 2013 May; 29(20):5944-51. PubMed ID: 23614663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of three-dimensional ordered hierarchically porous metal oxides via a hybridized epoxide assisted/colloidal crystal templating approach.
    Davis M; Ramirez DA; Hope-Weeks LJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7786-92. PubMed ID: 23926949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.