BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24559237)

  • 1. Molecular model of self diffusion in polar organic liquids: implications for conductivity and fluidity in polar organic liquids and electrolytes.
    Frech R; Petrowsky M
    J Phys Chem B; 2014 Mar; 118(9):2422-32. PubMed ID: 24559237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
    Petrowsky M; Fleshman AM; Frech R
    J Phys Chem B; 2013 Mar; 117(10):2971-8. PubMed ID: 23414431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.
    Petrowsky M; Fleshman A; Ismail M; Glatzhofer DT; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(33):10098-105. PubMed ID: 22838847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass and charge transport in 1-alkyl-3-methylimidazolium triflate ionic liquids.
    Petrowsky M; Burba CM; Frech R
    J Chem Phys; 2013 Nov; 139(20):204502. PubMed ID: 24289359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2010 Jul; 114(26):8600-5. PubMed ID: 20552999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.
    Fleshman AM; Forsythe GE; Petrowsky M; Frech R
    J Phys Chem B; 2016 Sep; 120(37):9959-68. PubMed ID: 27580069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the compensated arrhenius formalism to dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Dec; 113(50):16118-23. PubMed ID: 19924841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.
    Petrowsky M; Fleshman A; Frech R
    J Phys Chem B; 2012 May; 116(19):5760-5. PubMed ID: 22559992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.
    Fleshman AM; Petrowsky M; Frech R
    J Phys Chem B; 2013 May; 117(17):5330-7. PubMed ID: 23527562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of ion transport in dilute tetrabutylammonium triflate-acetate solutions and self-diffusion in pure acetate liquids.
    Bopege DN; Petrowsky M; Fleshman AM; Frech R; Johnson MB
    J Phys Chem B; 2012 Jan; 116(1):71-6. PubMed ID: 22145961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of ion transport: the compensated Arrhenius equation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Apr; 113(17):5996-6000. PubMed ID: 19338318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stokes shift dynamics in ionic liquids: temperature dependence.
    Kashyap HK; Biswas R
    J Phys Chem B; 2010 Dec; 114(50):16811-23. PubMed ID: 21126013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.
    Petrowsky M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 Nov; 117(46):14432-7. PubMed ID: 24156502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On intermolecular dipolar coupling in two strongly polar liquids: dimethyl sulfoxide and acetonitrile.
    Jadzyn J; Swiergiel J
    J Phys Chem B; 2011 May; 115(20):6623-8. PubMed ID: 21528869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids.
    Huang YN; Wang CJ; Riande E
    J Chem Phys; 2005 Apr; 122(14):144502. PubMed ID: 15847540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass and charge transport in cyclic carbonates: implications for improved lithium ion battery electrolytes.
    Petrowsky M; Ismail M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 May; 117(19):5963-70. PubMed ID: 23597103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers.
    Dubois F; Derouiche Y; Leblond JM; Maschke U; Douali R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032601. PubMed ID: 26465489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of thermal Z to E isomerization reactions of azobenzene and 4-dimethylamino-4'-nitroazobenzene in ionic liquids [1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with R = butyl, pentyl, and hexyl].
    Baba K; Ono H; Itoh E; Itoh S; Noda K; Usui T; Ishihara K; Inamo M; Takagi HD; Asano T
    Chemistry; 2006 Jul; 12(20):5328-33. PubMed ID: 16622884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute rotation in polar liquids: microscopic basis for the Stokes-Einstein-Debye model.
    Das A; Biswas R; Chakrabarti J
    J Chem Phys; 2012 Jan; 136(1):014505. PubMed ID: 22239787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquids.
    Buyukdagli S; Ala-Nissila T
    J Chem Phys; 2013 Jul; 139(4):044907. PubMed ID: 23902019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.