These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24559372)

  • 1. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells.
    Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.
    Yassin MA; Leknes KN; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2016 Aug; 104(8):2049-59. PubMed ID: 27086867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation.
    Skodje A; Idris SB; Sun Y; Bartaula S; Mustafa K; Finne-Wistrand A; Wikesjö UM; Leknes KN
    J Biomed Mater Res A; 2015 Jun; 103(6):1991-8. PubMed ID: 25231842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds.
    Idris SB; Bolstad AI; Ibrahim SO; Dånmark S; Finne-Wistrand A; Albertsson AC; Arvidson K; Mustafa K
    Tissue Eng Part A; 2011 Nov; 17(21-22):2817-31. PubMed ID: 21905880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells.
    Xing Z; Cai J; Sun Y; Cao M; Li Y; Xue Y; Finne-Wistrand A; Kamal M
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32610488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of short-run cell seeding methods for poly(L-lactide-co-1,5-dioxepan-2-one) scaffold intended for bone tissue engineering.
    Xing Z; Xue Y; Dånmark S; Finne-Wistrand A; Arvidson K; Hellem S; Yang ZQ; Mustafa K
    Int J Artif Organs; 2011 May; 34(5):432-41. PubMed ID: 21574158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copolymer cell/scaffold constructs for bone tissue engineering: co-culture of low ratios of human endothelial and osteoblast-like cells in a dynamic culture system.
    Xing Z; Xue Y; Finne-Wistrand A; Yang ZQ; Mustafa K
    J Biomed Mater Res A; 2013 Apr; 101(4):1113-20. PubMed ID: 23015514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.
    Yassin MA; Mustafa K; Xing Z; Sun Y; Fasmer KE; Waag T; Krueger A; Steinmüller-Nethl D; Finne-Wistrand A; Leknes KN
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28116858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.