BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24559402)

  • 1. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.
    Feldmesser E; Rosenwasser S; Vardi A; Ben-Dor S
    BMC Genomics; 2014 Feb; 15():148. PubMed ID: 24559402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the Microalgal Gene Landscape at the Strain Level: a Novel Hybrid Transcriptome of
    Sperfeld M; Yahalomi D; Segev E
    Appl Environ Microbiol; 2022 Jan; 88(2):e0141821. PubMed ID: 34757817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge-based reconstruction of mRNA transcripts with short sequencing reads for transcriptome research.
    Seok J; Xu W; Jiang H; Davis RW; Xiao W
    PLoS One; 2012; 7(2):e31440. PubMed ID: 22312447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis.
    Nam O; Park JM; Lee H; Jin E
    PLoS One; 2019; 14(8):e0221938. PubMed ID: 31465514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
    Rupp O; Becker J; Brinkrolf K; Timmermann C; Borth N; Pühler A; Noll T; Goesmann A
    PLoS One; 2014; 9(1):e85568. PubMed ID: 24427317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.
    Melicher D; Torson AS; Dworkin I; Bowsher JH
    BMC Genomics; 2014 Mar; 15(1):188. PubMed ID: 24621177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved annotation with de novo transcriptome assembly in four social amoeba species.
    Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C
    BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes.
    Johnson LK; Alexander H; Brown CT
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30544207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A
    Ramberg S; Høyheim B; Østbye TK; Andreassen R
    Front Genet; 2021; 12():656334. PubMed ID: 33986770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EasyCluster2: an improved tool for clustering and assembling long transcriptome reads.
    Bevilacqua V; Pietroleonardo N; Giannino E; Stroppa F; Simone D; Pesole G; Picardi E
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S7. PubMed ID: 25474441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of methods for de novo assembly of hymenopteran genomes using either haploid or diploid samples.
    Yahav T; Privman E
    Sci Rep; 2019 Apr; 9(1):6480. PubMed ID: 31019201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic Assembly and Annotation of Draft RNAseq Transcripts without a Reference Genome.
    Ptitsyn A; Temanni R; Bouchard C; Anderson PA
    PLoS One; 2015; 10(9):e0138006. PubMed ID: 26393794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes.
    Ashrafi H; Hill T; Stoffel K; Kozik A; Yao J; Chin-Wo SR; Van Deynze A
    BMC Genomics; 2012 Oct; 13():571. PubMed ID: 23110314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.