These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24559429)

  • 1. Identification of metalloporphyrins with high sensitivity using graphene-enhanced resonance Raman scattering.
    Kim BH; Kim D; Song S; Park D; Kang IS; Jeong DH; Jeon S
    Langmuir; 2014 Mar; 30(10):2960-7. PubMed ID: 24559429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles.
    Lee J; Shim S; Kim B; Shin HS
    Chemistry; 2011 Feb; 17(8):2381-7. PubMed ID: 21264961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine.
    Xu S; Man B; Jiang S; Wang J; Wei J; Xu S; Liu H; Gao S; Liu H; Li Z; Li H; Qiu H
    ACS Appl Mater Interfaces; 2015 May; 7(20):10977-87. PubMed ID: 25941901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.
    Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W
    Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy.
    Li YT; Qu LL; Li DW; Song QX; Fathi F; Long YT
    Biosens Bioelectron; 2013 May; 43():94-100. PubMed ID: 23287654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section.
    Thrall ES; Crowther AC; Yu Z; Brus LE
    Nano Lett; 2012 Mar; 12(3):1571-7. PubMed ID: 22335788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics.
    Qian Z; Cheng Y; Zhou X; Wu J; Xu G
    J Colloid Interface Sci; 2013 May; 397():103-7. PubMed ID: 23425548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport and Raman scattering in size-controlled nanoperforated graphene.
    Kim M; Safron NS; Han E; Arnold MS; Gopalan P
    ACS Nano; 2012 Nov; 6(11):9846-54. PubMed ID: 23113838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study.
    Malard LM; Moreira RL; Elias DC; Plentz F; Alves ES; Pimenta MA
    J Phys Condens Matter; 2010 Aug; 22(33):334202. PubMed ID: 21386492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can graphene be used as a substrate for Raman enhancement?
    Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z
    Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman enhancement on graphene: adsorbed and intercalated molecular species.
    Jung N; Crowther AC; Kim N; Kim P; Brus L
    ACS Nano; 2010 Nov; 4(11):7005-13. PubMed ID: 20945922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman study of ion-induced defects in N-layer graphene.
    Jorio A; Lucchese MM; Stavale F; Ferreira EH; Moutinho MV; Capaz RB; Achete CA
    J Phys Condens Matter; 2010 Aug; 22(33):334204. PubMed ID: 21386494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic glucose sensing by enhanced Raman spectroscopy on flexible 'as-grown' CVD graphene.
    Chattopadhyay S; Li MS; Kumar Roy P; Wu CT
    Analyst; 2015 Jun; 140(12):3935-41. PubMed ID: 25939991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8671-5. PubMed ID: 23421263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.