These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24559464)

  • 1. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube.
    Senevirathne V; Hapuarachchi H; Mallawaarachchi S; Gunapala SD; Stockman MI; Premaratne M
    J Phys Condens Matter; 2019 Feb; 31(8):085302. PubMed ID: 30540985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free electrons excited SPASER.
    Ye Y; Liu F; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2018 Nov; 26(24):31402-31412. PubMed ID: 30650726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the coupling of surface plasmons in carbon nanotubes by near-field nanoscopy.
    Tian X; Chen R; Chen J
    Nanoscale; 2021 Aug; 13(29):12454-12459. PubMed ID: 34477610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
    Meng X; Guler U; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Sci Rep; 2013; 3():1241. PubMed ID: 23393623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons.
    Postupna O; Jaeger HM; Prezhdo OV
    J Phys Chem Lett; 2014 Nov; 5(21):3872-7. PubMed ID: 26278762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.
    Roslyak O; Cherqui C; Dunlap DH; Piryatinski A
    J Phys Chem B; 2014 Jul; 118(28):8070-80. PubMed ID: 24666158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spaser operation below threshold: autonomous vs. driven spasers.
    Andrianov ES; Pukhov AA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2015 Aug; 23(17):21983-93. PubMed ID: 26368173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linewidth enhancement in spasers and plasmonic nanolasers.
    Ginzburg P; Zayats AV
    Opt Express; 2013 Jan; 21(2):2147-53. PubMed ID: 23389195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dynamics Study of Graphene Nanoflake Shuttle Device on Graphene Nanoribbon with Carbon Nanotube Blocks.
    Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5570-5574. PubMed ID: 32331136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized plasmonic field enhancement in shaped graphene nanoribbons.
    Xia SX; Zhai X; Wang LL; Lin Q; Wen SC
    Opt Express; 2016 Jul; 24(15):16336-48. PubMed ID: 27464087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plexcitonic crystals: a tunable platform for light-matter interactions.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Express; 2014 Sep; 22(18):21912-20. PubMed ID: 25321566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.