These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 24559490)
1. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. Galán-Mercant A; Cuesta-Vargas AI BMC Res Notes; 2014 Feb; 7():100. PubMed ID: 24559490 [TBL] [Abstract][Full Text] [Related]
2. Differences in trunk kinematic between frail and nonfrail elderly persons during turn transition based on a smartphone inertial sensor. Galán-Mercant A; Cuesta-Vargas AI Biomed Res Int; 2013; 2013():279197. PubMed ID: 24369530 [TBL] [Abstract][Full Text] [Related]
3. Differences in Trunk Accelerometry Between Frail and Nonfrail Elderly Persons in Sit-to-Stand and Stand-to-Sit Transitions Based on a Mobile Inertial Sensor. Galán-Mercant A; Cuesta-Vargas AI JMIR Mhealth Uhealth; 2013 Aug; 1(2):e21. PubMed ID: 25098977 [TBL] [Abstract][Full Text] [Related]
4. Mobile Romberg test assessment (mRomberg). Galán-Mercant A; Cuesta-Vargas AI BMC Res Notes; 2014 Sep; 7():640. PubMed ID: 25217250 [TBL] [Abstract][Full Text] [Related]
5. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Galán-Mercant A; Cuesta-Vargas AI Physiol Meas; 2015 Sep; 36(9):1929-42. PubMed ID: 26245213 [TBL] [Abstract][Full Text] [Related]
6. Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. Galán-Mercant A; Barón-López FJ; Labajos-Manzanares MT; Cuesta-Vargas AI Biomed Eng Online; 2014 Dec; 13():156. PubMed ID: 25440533 [TBL] [Abstract][Full Text] [Related]
7. Frailty assessment based on trunk kinematic parameters during walking. Martínez-Ramírez A; Martinikorena I; Gómez M; Lecumberri P; Millor N; Rodríguez-Mañas L; García García FJ; Izquierdo M J Neuroeng Rehabil; 2015 May; 12():48. PubMed ID: 26003560 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. Millor N; Lecumberri P; Gómez M; Martínez-Ramírez A; Izquierdo M J Neuroeng Rehabil; 2013 Aug; 10():86. PubMed ID: 24059755 [TBL] [Abstract][Full Text] [Related]
9. Validation of an accelerometer for measurement of activity in frail older people. Chigateri NG; Kerse N; Wheeler L; MacDonald B; Klenk J Gait Posture; 2018 Oct; 66():114-117. PubMed ID: 30172217 [TBL] [Abstract][Full Text] [Related]
10. High density muscle size and muscle power are associated with both gait and sit-to-stand kinematic parameters in frail nonagenarians. Millor N; Cadore EL; Gómez M; Martínez A; Lecumberri P; Martirikorena J; Idoate F; Izquierdo M J Biomech; 2020 May; 105():109766. PubMed ID: 32279932 [TBL] [Abstract][Full Text] [Related]
11. Kinematic analysis of motor strategies in frail aged adults during the Timed Up and Go: how to spot the motor frailty? Hassani A; Kubicki A; Brost V; Mourey F; Yang F Clin Interv Aging; 2015; 10():505-13. PubMed ID: 25759570 [TBL] [Abstract][Full Text] [Related]
12. Gait variability analysed using an accelerometer is associated with locomotive syndrome among the general elderly population: The GAINA study. Matsumoto H; Hagino H; Osaki M; Tanishima S; Tanimura C; Matsuura A; Makabe T J Orthop Sci; 2016 May; 21(3):354-60. PubMed ID: 27020175 [TBL] [Abstract][Full Text] [Related]
13. Performance of Different Timed Up and Go Subtasks in Frailty Syndrome. Ansai JH; Farche ACS; Rossi PG; de Andrade LP; Nakagawa TH; Takahashi ACM J Geriatr Phys Ther; 2019; 42(4):287-293. PubMed ID: 29210935 [TBL] [Abstract][Full Text] [Related]
14. Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Moe-Nilssen R; Helbostad JL Gait Posture; 2005 Feb; 21(2):164-70. PubMed ID: 15639395 [TBL] [Abstract][Full Text] [Related]
15. Kinematics and dynamic complexity of postural transitions in frail elderly subjects. Ganea R; Paraschiv-Ionescu A; Salarian A; Büla C; Martin E; Rochat S; Hoskovec C; Piot-Ziegler C; Aminian K Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6118-21. PubMed ID: 18003411 [TBL] [Abstract][Full Text] [Related]
16. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. Lamoth CJ; van Deudekom FJ; van Campen JP; Appels BA; de Vries OJ; Pijnappels M J Neuroeng Rehabil; 2011 Jan; 8():2. PubMed ID: 21241487 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of Comprehensive Gait Assessment using InerTial Sensor score (C-GAITS score) derived from acceleration and angular velocity data at heel and lower trunk among community-dwelling older adults. Misu S; Asai T; Doi T; Sawa R; Ueda Y; Murata S; Saito T; Sugimoto T; Isa T; Tsuboi Y; Yamada M; Ono R J Neuroeng Rehabil; 2019 May; 16(1):62. PubMed ID: 31138310 [TBL] [Abstract][Full Text] [Related]
18. Effects of Balance Control Through Trunk Movement During Square and Semicircular Turns on Gait Velocity, Center of Mass Acceleration, and Energy Expenditure in Older Adults. Shin SS; An DH; Yoo WG PM R; 2016 Oct; 8(10):953-961. PubMed ID: 26972362 [TBL] [Abstract][Full Text] [Related]
19. A Clustering-Based Approach to Functional and Biomechanical Parameters Recorded with a Pair of Smart Eyeglasses in Older Adults in Order to Determine Physical Performance Groups. Hellec J; Colson SS; Jaafar A; Guérin O; Chorin F Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474963 [TBL] [Abstract][Full Text] [Related]
20. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy. Lebel K; Boissy P; Nguyen H; Duval C Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]