BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24559535)

  • 1. Alkali metal cation interactions with 15-crown-5 in the gas phase: revisited.
    Armentrout PB; Austin CA; Rodgers MT
    J Phys Chem A; 2014 Sep; 118(37):8088-97. PubMed ID: 24559535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali metal cation binding affinities of cytosine in the gas phase: revisited.
    Yang B; Rodgers MT
    Phys Chem Chem Phys; 2014 Aug; 16(30):16110-20. PubMed ID: 24967574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal cation dependence of interactions with amino acids: bond energies of Rb+ and Cs+ to Met, Phe, Tyr, and Trp.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2013 Apr; 117(14):3771-81. PubMed ID: 23514190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2014 Apr; 118(16):4300-14. PubMed ID: 24528155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemistry of alkali metal cation interactions with histidine: influence of the side chain.
    Armentrout PB; Citir M; Chen Y; Rodgers MT
    J Phys Chem A; 2012 Dec; 116(48):11823-32. PubMed ID: 23163558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal cation dependence of interactions with amino acids: bond energies of Cs+ to Gly, Pro, Ser, Thr, and Cys.
    Armentrout PB; Chen Y; Rodgers MT
    J Phys Chem A; 2012 Apr; 116(16):3989-99. PubMed ID: 22452793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental and theoretical study of alkali metal cation interactions with cysteine.
    Armentrout PB; Armentrout EI; Clark AA; Cooper TE; Stennett EM; Carl DR
    J Phys Chem B; 2010 Mar; 114(11):3927-37. PubMed ID: 20184310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal cation dependence of interactions with amino acids: bond energies of Rb+ to Gly, Ser, Thr, and Pro.
    Bowman VN; Heaton AL; Armentrout PB
    J Phys Chem B; 2010 Mar; 114(11):4107-14. PubMed ID: 20184306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.
    Austin CA; Rodgers MT
    J Phys Chem A; 2014 Jul; 118(29):5488-500. PubMed ID: 24977648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tautomerization in the formation and collision-induced dissociation of alkali metal cation-cytosine complexes.
    Yang Z; Rodgers MT
    Phys Chem Chem Phys; 2012 Apr; 14(13):4517-26. PubMed ID: 22361913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The special five-membered ring of proline: An experimental and theoretical investigation of alkali metal cation interactions with proline and its four- and six-membered ring analogues.
    Moision RM; Armentrout PB
    J Phys Chem A; 2006 Mar; 110(11):3933-46. PubMed ID: 16539415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole effects on cation-pi interactions: absolute bond dissociation energies of complexes of alkali metal cations to N-methylaniline and N,N-dimethylaniline.
    Hallowita N; Carl DR; Armentrout PB; Rodgers MT
    J Phys Chem A; 2008 Sep; 112(35):7996-8008. PubMed ID: 18698747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical studies of potassium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Armentrout PB
    J Phys Chem B; 2008 Sep; 112(38):12056-65. PubMed ID: 18729510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling metal cation-phosphate interactions in nucleic acids in the gas phase via alkali metal cation-triethyl phosphate complexes.
    Ruan C; Huang H; Rodgers MT
    J Phys Chem A; 2007 Dec; 111(51):13521-7. PubMed ID: 18052264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.
    Nose H; Chen Y; Rodgers MT
    J Phys Chem A; 2013 May; 117(20):4316-30. PubMed ID: 23565706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes.
    Ruan C; Yang Z; Hallowita N; Rodgers MT
    J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent interactions of Cu+ with N-donor ligands (pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline): collision-induced dissociation and theoretical studies.
    Rannulu NS; Rodgers MT
    J Phys Chem A; 2007 May; 111(18):3465-79. PubMed ID: 17439193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Computational Study of the Group 1 Metal Cation Chelates with Lysine: Bond Dissociation Energies, Structures, and Structural Trends.
    Clark AA; Yang B; Rodgers MT; Armentrout PB
    J Phys Chem B; 2019 Mar; 123(9):1983-1997. PubMed ID: 30698972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-pi interactions: structures and energetics of complexation of Na+ and K+ with the aromatic amino acids, phenylalanine, tyrosine, and tryptophan.
    Ruan C; Rodgers MT
    J Am Chem Soc; 2004 Nov; 126(44):14600-10. PubMed ID: 15521780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential bond energies of Fe+ (CO2)n, n = 1-5, determined by threshold collision-induced dissociation and ab initio theory.
    Armentrout PB; Koizumi H; MacKenna M
    J Phys Chem A; 2005 Dec; 109(50):11365-75. PubMed ID: 16354023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.