These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24559714)

  • 1. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation.
    Ni SQ; Yang N
    J Colloid Interface Sci; 2014 Apr; 420():158-65. PubMed ID: 24559714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles.
    Shih YH; Tai YT
    Chemosphere; 2010 Mar; 78(10):1200-6. PubMed ID: 20117822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solvent on debromination of decabromodiphenyl ether by Ni/Fe nanoparticles and nano zero-valent iron particles.
    Tan L; Liang B; Cheng W; Fang Z; Tsang EP
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22172-22182. PubMed ID: 27544529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism.
    Liu Z; Gu C; Ye M; Bian Y; Cheng Y; Wang F; Yang X; Song Y; Jiang X
    J Hazard Mater; 2015 Nov; 298():328-37. PubMed ID: 26094061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism.
    Fang Z; Qiu X; Chen J; Qiu X
    J Hazard Mater; 2011 Jan; 185(2-3):958-69. PubMed ID: 21035251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron.
    Zhuang Y; Ahn S; Seyfferth AL; Masue-Slowey Y; Fendorf S; Luthy RG
    Environ Sci Technol; 2011 Jun; 45(11):4896-903. PubMed ID: 21557574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.
    Fu R; Xu Z; Peng L; Bi D
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23983-23993. PubMed ID: 27634155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive debromination of decabromodiphenyl ether by iron sulfide-coated nanoscale zerovalent iron: mechanistic insights from Fe(II) dissolution and solvent kinetic isotope effects.
    Wei X; Yin H; Peng H; Chen R; Lu G; Dang Z
    Environ Pollut; 2019 Oct; 253():161-170. PubMed ID: 31306823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism.
    Xie Y; Fang Z; Cheng W; Tsang PE; Zhao D
    Sci Total Environ; 2014 Jul; 485-486():363-370. PubMed ID: 24742544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy.
    Luo S; Yang S; Sun C; Gu JD
    Sci Total Environ; 2012 Jul; 429():300-8. PubMed ID: 22595555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and pathways of debromination of polybrominated diphenyl ethers (PBDEs) in various nano-zerovalent iron-based bimetallic systems.
    Wang R; Tang T; Lu G; Zheng Z; Huang K; Li H; Tao X; Yin H; Shi Z; Lin Z; Wu F; Dang Z
    Sci Total Environ; 2019 Apr; 661():18-26. PubMed ID: 30665128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst.
    Zhuang Y; Jin L; Luthy RG
    Chemosphere; 2012 Oct; 89(4):426-32. PubMed ID: 22732301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics.
    Liang DW; Yang YH; Xu WW; Peng SK; Lu SF; Xiang Y
    J Hazard Mater; 2014 Aug; 278():592-6. PubMed ID: 25019577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles.
    Li A; Tai C; Zhao Z; Wang Y; Zhang Q; Jiang G; Hu J
    Environ Sci Technol; 2007 Oct; 41(19):6841-6. PubMed ID: 17969704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced reductive debromination of decabromodiphenyl ether by organic-attapulgite supported Fe/Pd nanoparticles: Synergetic effect and mechanism.
    Liu Z; Yang H; Wang M; Sun Y; Fei Z; Chen S; Luo R; Hu L; Gu C
    J Colloid Interface Sci; 2022 May; 613():337-348. PubMed ID: 35051719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects.
    Tso CP; Shih YH
    J Hazard Mater; 2017 Jan; 322(Pt A):145-151. PubMed ID: 27083057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions.
    Barnes RJ; Riba O; Gardner MN; Scott TB; Jackman SA; Thompson IP
    Chemosphere; 2010 Apr; 79(4):448-54. PubMed ID: 20156632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.