BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24559987)

  • 1. Stochastic fusion simulations and experiments suggest passive and active roles of hemagglutinin during membrane fusion.
    Lee DW; Thapar V; Clancy P; Daniel S
    Biophys J; 2014 Feb; 106(4):843-54. PubMed ID: 24559987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates.
    Ivanovic T; Choi JL; Whelan SP; van Oijen AM; Harrison SC
    Elife; 2013 Feb; 2():e00333. PubMed ID: 23550179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion.
    Bentz J
    Biophys J; 2000 Jan; 78(1):227-45. PubMed ID: 10620288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion.
    Hamilton BS; Whittaker GR; Daniel S
    Viruses; 2012 Jul; 4(7):1144-68. PubMed ID: 22852045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fusion by single influenza hemagglutinin trimers. Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles.
    Imai M; Mizuno T; Kawasaki K
    J Biol Chem; 2006 May; 281(18):12729-35. PubMed ID: 16505474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.
    Gray C; Tamm LK
    Protein Sci; 1998 Nov; 7(11):2359-73. PubMed ID: 9828002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.
    Wang W; DeFeo CJ; Alvarado-Facundo E; Vassell R; Weiss CD
    J Virol; 2015 Oct; 89(20):10602-11. PubMed ID: 26269180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The final conformation of the complete ectodomain of the HA2 subunit of influenza hemagglutinin can by itself drive low pH-dependent fusion.
    Kim CS; Epand RF; Leikina E; Epand RM; Chernomordik LV
    J Biol Chem; 2011 Apr; 286(15):13226-34. PubMed ID: 21292763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hemagglutinin surface density in the initial stages of influenza virus fusion: lack of evidence for cooperativity.
    Günther-Ausborn S; Schoen P; Bartoldus I; Wilschut J; Stegmann T
    J Virol; 2000 Mar; 74(6):2714-20. PubMed ID: 10684287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin.
    Han X; Bushweller JH; Cafiso DS; Tamm LK
    Nat Struct Biol; 2001 Aug; 8(8):715-20. PubMed ID: 11473264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy.
    Lim KS; Mohamed MS; Wang H; Hartono ; Hazawa M; Kobayashi A; Voon DC; Kodera N; Ando T; Wong RW
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129313. PubMed ID: 30825615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin.
    Schroth-Diez B; Ponimaskin E; Reverey H; Schmidt MF; Herrmann A
    J Virol; 1998 Jan; 72(1):133-41. PubMed ID: 9420208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes.
    Sammalkorpi M; Lazaridis T
    Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density.
    Ellens H; Bentz J; Mason D; Zhang F; White JM
    Biochemistry; 1990 Oct; 29(41):9697-707. PubMed ID: 2271610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the influenza hemagglutinin membrane fusion site.
    Bentz J; Mittal A
    Biochim Biophys Acta; 2003 Jul; 1614(1):24-35. PubMed ID: 12873763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements.
    Kozlov MM; Chernomordik LV
    Biophys J; 1998 Sep; 75(3):1384-96. PubMed ID: 9726939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin.
    Tatulian SA; Tamm LK
    Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion.
    Haque ME; Chakraborty H; Koklic T; Komatsu H; Axelsen PH; Lentz BR
    Biophys J; 2011 Sep; 101(5):1095-104. PubMed ID: 21889446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.
    Larsson P; Kasson PM
    PLoS Comput Biol; 2013; 9(3):e1002950. PubMed ID: 23505359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the metastable state of influenza hemagglutinin.
    Kingsley CN; Antanasijevic A; Palka-Hamblin H; Durst M; Ramirez B; Lavie A; Caffrey M
    J Biol Chem; 2017 Dec; 292(52):21590-21597. PubMed ID: 29127198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.