These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24560132)

  • 1. Automatic interpretation and writing report of the adult waking electroencephalogram.
    Shibasaki H; Nakamura M; Sugi T; Nishida S; Nagamine T; Ikeda A
    Clin Neurophysiol; 2014 Jun; 125(6):1081-94. PubMed ID: 24560132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic interpretation of hyperventilation-induced electroencephalogram constructed in the way of qualified electroencephalographer's visual inspection.
    Zhang X; Wang X; Sugi T; Ikeda A; Nagamine T; Shibasaki H; Nakamura M
    Med Biol Eng Comput; 2011 Feb; 49(2):171-80. PubMed ID: 20938750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical application of automatic integrative interpretation of awake background EEG: quantitative interpretation, report making, and detection of artifacts and reduced vigilance level.
    Nakamura M; Sugi T; Ikeda A; Kakigi R; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1996 Feb; 98(2):103-12. PubMed ID: 8598170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic EEG interpretation: a new computer-assisted system for the automatic integrative interpretation of awake background EEG.
    Nakamura M; Shibasaki H; Imajoh K; Nishida S; Neshige R; Ikeda A
    Electroencephalogr Clin Neurophysiol; 1992 Jun; 82(6):423-31. PubMed ID: 1375549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avoiding the pitfalls of EEG interpretation in childhood epilepsy.
    Mizrahi EM
    Epilepsia; 1996; 37 Suppl 1():S41-51. PubMed ID: 8647051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.
    Wang B; Wang X; Ikeda A; Nagamine T; Shibasaki H; Nakamura M
    Med Eng Phys; 2014 Jan; 36(1):88-95. PubMed ID: 24182423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic spike detection system based on elimination of false positives using the large-area context in the scalp EEG.
    Ji Z; Sugi T; Goto S; Wang X; Ikeda A; Nagamine T; Shibasaki H; Nakamura M
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2478-88. PubMed ID: 21622069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the AFOP/DAFOP method for automatic filtering of EEGs of patients with epilepsy.
    Peyrodie L; Gallois P; Boudet S; Cao H; Barbaste P; Szurhaj W
    J Clin Neurophysiol; 2014 Apr; 31(2):152-61. PubMed ID: 24691234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COMSTAT rule for vigilance classification based on spontaneous EEG activity.
    Streitberg B; Röhmel J; Herrmann WM; Kubicki S
    Neuropsychobiology; 1987; 17(1-2):105-17. PubMed ID: 3627388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing detection and analysis of slow waves in sleep EEG.
    Mensen A; Riedner B; Tononi G
    J Neurosci Methods; 2016 Dec; 274():1-12. PubMed ID: 27663980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of motion artifact rejection due to active electrodes and driven-right-leg circuit in spike detection algorithms.
    Nonclercq A; Mathys P
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20615805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extraction of the EEG signal feature based on echo state networks].
    Han M; Sun L; Hong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):206-11. PubMed ID: 22616159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evoked potentials and behavioral performance during different states of brain arousal.
    Huang J; Hensch T; Ulke C; Sander C; Spada J; Jawinski P; Hegerl U
    BMC Neurosci; 2017 Jan; 18(1):21. PubMed ID: 28122495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic classification algorithms of the EEG monitor Narcotrend for routinely recorded EEG data from general anaesthesia: a validation study.
    Schultz B; Grouven U; Schultz A
    Biomed Tech (Berl); 2002; 47(1-2):9-13. PubMed ID: 11921636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multistage knowledge-based system for EEG seizure detection in newborn infants.
    Aarabi A; Grebe R; Wallois F
    Clin Neurophysiol; 2007 Dec; 118(12):2781-97. PubMed ID: 17905654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies.
    Schelter B; Winterhalder M; Maiwald T; Brandt A; Schad A; Timmer J; Schulze-Bonhage A
    Epilepsia; 2006 Dec; 47(12):2058-70. PubMed ID: 17201704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI.
    Chowdhury ME; Mullinger KJ; Glover P; Bowtell R
    Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spectral methods for automatic determination of artefacts in digital EEG systems].
    Alhasan A; Vasserman EL; Geppener VV
    Med Tekh; 1996; (4):5-7. PubMed ID: 8965671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.