These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24560162)

  • 41. Exploring the modular nature of riboswitches and RNA thermometers.
    Roßmanith J; Narberhaus F
    Nucleic Acids Res; 2016 Jun; 44(11):5410-23. PubMed ID: 27060146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging applications of riboswitches - from antibacterial targets to molecular tools.
    Machtel P; Bąkowska-Żywicka K; Żywicki M
    J Appl Genet; 2016 Nov; 57(4):531-541. PubMed ID: 27020791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
    Guedich S; Puffer-Enders B; Baltzinger M; Hoffmann G; Da Veiga C; Jossinet F; Thore S; Bec G; Ennifar E; Burnouf D; Dumas P
    RNA Biol; 2016; 13(4):373-90. PubMed ID: 26932506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Singlet glycine riboswitches bind ligand as well as tandem riboswitches.
    Ruff KM; Muhammad A; McCown PJ; Breaker RR; Strobel SA
    RNA; 2016 Nov; 22(11):1728-1738. PubMed ID: 27659053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ITC analysis of ligand binding to preQ₁ riboswitches.
    Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE
    Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile.
    Yan LH; Le Roux A; Boyapelly K; Lamontagne AM; Archambault MA; Picard-Jean F; Lalonde-Seguin D; St-Pierre E; Najmanovich RJ; Fortier LC; Lafontaine D; Marsault É
    Eur J Med Chem; 2018 Jan; 143():755-768. PubMed ID: 29220796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The enzymic oxidation of certain folic acid antagonists.
    LOO TL; ADAMSON RH
    Biochem Pharmacol; 1962 Feb; 11():170-1. PubMed ID: 14466528
    [No Abstract]   [Full Text] [Related]  

  • 52. Inhibition of nonfolic-acid-requiring organisms by folic acid antagonists: mechanism of reversal.
    MCGLOHON VM; PETERSON BH; BIRD OD
    Can J Microbiol; 1957 Jun; 3(4):569-78. PubMed ID: 13437219
    [No Abstract]   [Full Text] [Related]  

  • 53. Antimalarials as antagonists of purines and pteroylglutamic acid.
    FALCO EA; HITCHINGS GH
    Nature; 1949 Jul; 164(4159):107. PubMed ID: 18146846
    [No Abstract]   [Full Text] [Related]  

  • 54. Riboswitches. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator.
    DebRoy S; Gebbie M; Ramesh A; Goodson JR; Cruz MR; van Hoof A; Winkler WC; Garsin DA
    Science; 2014 Aug; 345(6199):937-40. PubMed ID: 25146291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding versus triggering riboswitches.
    Hartig JS
    Chem Biol; 2014 Feb; 21(2):167. PubMed ID: 24560162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch.
    Trausch JJ; Batey RT
    Chem Biol; 2014 Feb; 21(2):205-16. PubMed ID: 24388757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes.
    Zhang M; Liu G; Zhang Y; Chen T; Feng S; Cai R; Lu C
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural insights into translation regulation by the THF-II riboswitch.
    Xu L; Xiao Y; Zhang J; Fang X
    Nucleic Acids Res; 2023 Jan; 51(2):952-965. PubMed ID: 36620887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purine sensing by riboswitches.
    Kim JN; Breaker RR
    Biol Cell; 2008 Jan; 100(1):1-11. PubMed ID: 18072940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.