These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24560505)

  • 21. Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization.
    Tabata Y; Lutolf MP
    Sci Rep; 2017 Mar; 7():44711. PubMed ID: 28303935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrins regulate mouse embryonic stem cell self-renewal.
    Hayashi Y; Furue MK; Okamoto T; Ohnuma K; Myoishi Y; Fukuhara Y; Abe T; Sato JD; Hata R; Asashima M
    Stem Cells; 2007 Dec; 25(12):3005-15. PubMed ID: 17717067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates.
    Khoury M; Bransky A; Korin N; Konak LC; Enikolopov G; Tzchori I; Levenberg S
    Biomed Microdevices; 2010 Dec; 12(6):1001-8. PubMed ID: 20665114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels.
    Kim M; Song KH; Doh J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activated Notch1 is a stronger astrocytic stimulus than leukemia inhibitory factor for rat neural stem cells.
    Rodríguez-Rivera NS; Molina-Hernández A; Sánchez-Cruz E; Escalante-Alcalde D; Velasco I
    Int J Dev Biol; 2009; 53(7):947-53. PubMed ID: 19378247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamic spinning of hydrogel fibers.
    Hu M; Deng R; Schumacher KM; Kurisawa M; Ye H; Purnamawati K; Ying JY
    Biomaterials; 2010 Feb; 31(5):863-9. PubMed ID: 19878994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal control of gene expression using microfluidics.
    Benedetto A; Accetta G; Fujita Y; Charras G
    Lab Chip; 2014 Apr; 14(7):1336-47. PubMed ID: 24531367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system.
    Wan CR; Chung S; Kamm RD
    Ann Biomed Eng; 2011 Jun; 39(6):1840-7. PubMed ID: 21336802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.
    Wallace C; Jacob JT; Stoltz A; Bi J; Bundy K
    J Biomed Mater Res A; 2005 Jan; 72(1):19-24. PubMed ID: 15534866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Chondrocyte microenvironment and application of microfluidic chips in constructing chondrocyte microenvironment].
    Zhong W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jan; 28(1):105-8. PubMed ID: 24693790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study.
    Liu Z; Xiao L; Xu B; Zhang Y; Mak AF; Li Y; Man WY; Yang M
    Biomicrofluidics; 2012 Jun; 6(2):24111-2411112. PubMed ID: 22550556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell-derived mesoderm and blood progenitors in a defined, serum-free media.
    Purpura KA; Morin J; Zandstra PW
    Exp Hematol; 2008 Sep; 36(9):1186-98. PubMed ID: 18550259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The influence of LIF (leukemia inhibitory factor) on the functional status of mouse line R1 embryonic stem cells].
    Lobanok ES; Mezhevikina LM; Belianovich LM; Petrova RR; Vasilevich IB; Volotkovskiĭ ID; Fesenko EE
    Biomed Khim; 2008; 54(5):570-6. PubMed ID: 19105399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular immobilization within microfluidic microenvironments: dielectrophoresis with polyelectrolyte multilayers.
    Forry SP; Reyes DR; Gaitan M; Locascio LE
    J Am Chem Soc; 2006 Oct; 128(42):13678-9. PubMed ID: 17044682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.