BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24560571)

  • 1. Evoked and spontaneous transmission favored by distinct sets of synapses.
    Peled ES; Newman ZL; Isacoff EY
    Curr Biol; 2014 Mar; 24(5):484-93. PubMed ID: 24560571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction.
    Graf ER; Valakh V; Wright CM; Wu C; Liu Z; Zhang YQ; DiAntonio A
    J Neurosci; 2012 Nov; 32(47):16586-96. PubMed ID: 23175814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
    Hong H; Zhao K; Huang S; Huang S; Yao A; Jiang Y; Sigrist S; Zhao L; Zhang YQ
    J Neurosci; 2020 Apr; 40(14):2817-2827. PubMed ID: 32122953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic excitation is regulated by the postsynaptic dSK channel at the Drosophila larval NMJ.
    Gertner DM; Desai S; Lnenicka GA
    J Neurophysiol; 2014 Jun; 111(12):2533-43. PubMed ID: 24671529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct molecular pathways govern presynaptic homeostatic plasticity.
    Nair AG; Muttathukunnel P; Müller M
    Cell Rep; 2021 Dec; 37(11):110105. PubMed ID: 34910905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmission: spontaneous and evoked release filing for divorce.
    Walter AM; Haucke V; Sigrist SJ
    Curr Biol; 2014 Mar; 24(5):R192-4. PubMed ID: 24602882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RhoGAP crossveinless-c interacts with Dystrophin and is required for synaptic homeostasis at the Drosophila neuromuscular junction.
    Pilgram GS; Potikanond S; van der Plas MC; Fradkin LG; Noordermeer JN
    J Neurosci; 2011 Jan; 31(2):492-500. PubMed ID: 21228159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy.
    Goel P; Li X; Dickman D
    Cell Rep; 2017 Nov; 21(9):2339-2347. PubMed ID: 29186673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active zone compaction correlates with presynaptic homeostatic potentiation.
    Mrestani A; Pauli M; Kollmannsberger P; Repp F; Kittel RJ; Eilers J; Doose S; Sauer M; Sirén AL; Heckmann M; Paul MM
    Cell Rep; 2021 Oct; 37(1):109770. PubMed ID: 34610300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rab3 dynamically controls protein composition at active zones.
    Graf ER; Daniels RW; Burgess RW; Schwarz TL; DiAntonio A
    Neuron; 2009 Dec; 64(5):663-77. PubMed ID: 20005823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses.
    Rohrbough J; Spitzer NC
    J Neurosci; 1999 Oct; 19(19):8528-41. PubMed ID: 10493753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging.
    Newman ZL; Bakshinskaya D; Schultz R; Kenny SJ; Moon S; Aghi K; Stanley C; Marnani N; Li R; Bleier J; Xu K; Isacoff EY
    Nat Commun; 2022 Jan; 13(1):229. PubMed ID: 35017509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions.
    Reiff DF; Thiel PR; Schuster CM
    J Neurosci; 2002 Nov; 22(21):9399-409. PubMed ID: 12417665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release.
    Saitoe M; Schwarz TL; Umbach JA; Gundersen CB; Kidokoro Y
    Science; 2001 Jul; 293(5529):514-7. PubMed ID: 11463917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials.
    Grasskamp AT; Jusyte M; McCarthy AW; Götz TWB; Ditlevsen S; Walter AM
    Front Cell Neurosci; 2023; 17():1129417. PubMed ID: 36970416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction.
    Kauwe G; Isacoff EY
    Proc Natl Acad Sci U S A; 2013 May; 110(22):9142-7. PubMed ID: 23674684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs.
    Thomas U; Sigrist SJ
    Adv Exp Med Biol; 2012; 970():3-28. PubMed ID: 22351049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid homeostatic modulation of transsynaptic nanocolumn rings.
    Muttathukunnel P; Frei P; Perry S; Dickman D; Müller M
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2119044119. PubMed ID: 36322725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.