BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24560571)

  • 61. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons.
    Fitzsimonds RM; Dichter MA
    J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
    Zamir O; Charlton MP
    J Physiol; 2006 Feb; 571(Pt 1):83-99. PubMed ID: 16339182
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses.
    Komatsu Y; Yoshimura Y
    J Neurosci; 2000 Oct; 20(20):7539-46. PubMed ID: 11027212
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Presynaptic PI3K activity triggers the formation of glutamate receptors at neuromuscular terminals of Drosophila.
    Jordán-Álvarez S; Fouquet W; Sigrist SJ; Acebes A
    J Cell Sci; 2012 Aug; 125(Pt 15):3621-9. PubMed ID: 22505608
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool.
    Müller M; Liu KS; Sigrist SJ; Davis GW
    J Neurosci; 2012 Nov; 32(47):16574-85. PubMed ID: 23175813
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.
    Lee J; Ueda A; Wu CF
    Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction.
    Ghosh R; Vegesna S; Safi R; Bao H; Zhang B; Marenda DR; Liebl FL
    PLoS One; 2014; 9(11):e113494. PubMed ID: 25412171
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Postsynaptic cAMP signalling regulates the antagonistic balance of
    Zhao K; Hong H; Zhao L; Huang S; Gao Y; Metwally E; Jiang Y; Sigrist SJ; Zhang YQ
    Development; 2020 Dec; 147(24):. PubMed ID: 33234716
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission.
    Renden RB; Broadie K
    J Neurophysiol; 2003 May; 89(5):2620-38. PubMed ID: 12611964
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stochastic Properties of Spontaneous Synaptic Transmission at Individual Active Zones.
    Astacio H; Vasin A; Bykhovskaia M
    J Neurosci; 2022 Feb; 42(6):1001-1019. PubMed ID: 34969867
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Excess glutamate release triggers subunit-specific homeostatic receptor scaling.
    Han Y; Goel P; Chen J; Perry S; Tran N; Nishimura S; Sanjani M; Chien C; Dickman D
    Cell Rep; 2023 Jul; 42(7):112775. PubMed ID: 37436892
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cortactin Is a Regulator of Activity-Dependent Synaptic Plasticity Controlled by Wingless.
    Alicea D; Perez M; Maldonado C; Dominicci-Cotto C; Marie B
    J Neurosci; 2017 Feb; 37(8):2203-2215. PubMed ID: 28123080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Receptor clustering: nothing succeeds like success.
    Griffith LC
    Curr Biol; 2004 Jun; 14(11):R413-5. PubMed ID: 15182686
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Homeostatic scaling of active zone scaffolds maintains global synaptic strength.
    Goel P; Dufour Bergeron D; Böhme MA; Nunnelly L; Lehmann M; Buser C; Walter AM; Sigrist SJ; Dickman D
    J Cell Biol; 2019 May; 218(5):1706-1724. PubMed ID: 30914419
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Experience-dependent formation and recruitment of large vesicles from reserve pool.
    Steinert JR; Kuromi H; Hellwig A; Knirr M; Wyatt AW; Kidokoro Y; Schuster CM
    Neuron; 2006 Jun; 50(5):723-33. PubMed ID: 16731511
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Long-term in vivo modulation of synaptic efficacy at the neuromuscular junction of Rana pipiens frogs.
    Bélair EL; Vallée J; Robitaille R
    J Physiol; 2005 Nov; 569(Pt 1):163-78. PubMed ID: 16166159
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Counting quanta: direct measurements of transmitter release at a central synapse.
    Isaacson JS; Walmsley B
    Neuron; 1995 Oct; 15(4):875-84. PubMed ID: 7576636
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Presynaptic impairment of synaptic transmission in Drosophila embryos lacking Gs(alpha).
    Hou D; Suzuki K; Wolfgang WJ; Clay C; Forte M; Kidokoro Y
    J Neurosci; 2003 Jul; 23(13):5897-905. PubMed ID: 12843294
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum.
    Hashimoto K; Kano M
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):391-405. PubMed ID: 9490867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.