These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 24560688)

  • 21. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease.
    Duncan EJ; Cheetham ME; Chapple JP; van der Spuy J
    Subcell Biochem; 2015; 78():243-73. PubMed ID: 25487025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases.
    Dash R; Jahan I; Ali MC; Mitra S; Munni YA; Timalsina B; Hannan MA; Moon IS
    Neurochem Int; 2021 May; 145():105011. PubMed ID: 33711400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent developments in targeting protein misfolding diseases.
    Denny RA; Gavrin LK; Saiah E
    Bioorg Med Chem Lett; 2013 Apr; 23(7):1935-44. PubMed ID: 23454013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein solubility and protein homeostasis: a generic view of protein misfolding disorders.
    Vendruscolo M; Knowles TP; Dobson CM
    Cold Spring Harb Perspect Biol; 2011 Dec; 3(12):. PubMed ID: 21825020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Type 2 diabetes as a protein misfolding disease.
    Mukherjee A; Morales-Scheihing D; Butler PC; Soto C
    Trends Mol Med; 2015 Jul; 21(7):439-49. PubMed ID: 25998900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular protein homeostasis in neurodegenerative diseases.
    Wilson MR; Satapathy S; Vendruscolo M
    Nat Rev Neurol; 2023 Apr; 19(4):235-245. PubMed ID: 36828943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using pharmacological chaperones to restore proteostasis.
    Wang YJ; Di XJ; Mu TW
    Pharmacol Res; 2014 May; 83():3-9. PubMed ID: 24747662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyglutamine misfolding in yeast: toxic and protective aggregation.
    Duennwald ML
    Prion; 2011; 5(4):285-90. PubMed ID: 22052348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation.
    Michaels TCT; Šarić A; Habchi J; Chia S; Meisl G; Vendruscolo M; Dobson CM; Knowles TPJ
    Annu Rev Phys Chem; 2018 Apr; 69():273-298. PubMed ID: 29490200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Walking the tightrope: proteostasis and neurodegenerative disease.
    Yerbury JJ; Ooi L; Dillin A; Saunders DN; Hatters DM; Beart PM; Cashman NR; Wilson MR; Ecroyd H
    J Neurochem; 2016 May; 137(4):489-505. PubMed ID: 26872075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on protein misfolding, aggregation and strategies to prevent related ailments.
    Shamsi TN; Athar T; Parveen R; Fatima S
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):993-1000. PubMed ID: 28743576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates.
    Ilyinsky NS; Nesterov SV; Shestoperova EI; Fonin AV; Uversky VN; Gordeliy VI
    Biochemistry (Mosc); 2021 Mar; 86(3):275-289. PubMed ID: 33838629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation.
    Yoshimura Y; Lin Y; Yagi H; Lee YH; Kitayama H; Sakurai K; So M; Ogi H; Naiki H; Goto Y
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14446-51. PubMed ID: 22908252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases.
    Ries HM; Nussbaum-Krammer C
    Essays Biochem; 2016 Oct; 60(2):181-190. PubMed ID: 27744334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Proteinopathies--forms of neurodegenerative disorders with protein aggregation-based pathology].
    Shelkovnikova TA; Kulikova AA; Tsvetkov FO; Peters O; Bachurin SO; Bukhman VL; Ninkina NN
    Mol Biol (Mosk); 2012; 46(3):402-15. PubMed ID: 22888630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing the power of yeast to unravel the molecular basis of neurodegeneration.
    Tenreiro S; Munder MC; Alberti S; Outeiro TF
    J Neurochem; 2013 Nov; 127(4):438-52. PubMed ID: 23600759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein folding, misfolding, aggregation and their implications in human diseases: discovering therapeutic ways to amyloid-associated diseases.
    Iram A; Naeem A
    Cell Biochem Biophys; 2014 Sep; 70(1):51-61. PubMed ID: 24639112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils.
    Zlatic CO; Mao Y; Ryan TM; Mok YF; Roberts BR; Howlett GJ; Griffin MD
    Biochemistry; 2015 Jun; 54(24):3831-8. PubMed ID: 26021642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Misfolding of Proteins.
    Argyrou A
    Adv Exp Med Biol; 2020; 1195():249-254. PubMed ID: 32468483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases.
    Melki R
    J Parkinsons Dis; 2015; 5(2):217-27. PubMed ID: 25757830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.