BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24560813)

  • 1. Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.
    Gryliuk G; Rätsep M; Hildebrandt S; Irrgang KD; Eckert HJ; Pieper J
    Biochim Biophys Acta; 2014 Sep; 1837(9):1490-9. PubMed ID: 24560813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation energy transfer in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by spectral hole burning.
    Pieper J; Rätsep M; Golub M; Schmitt FJ; Artene P; Eckert HJ
    Photosynth Res; 2017 Sep; 133(1-3):225-234. PubMed ID: 28560566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy.
    Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ
    Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina.
    Theiss C; Schmitt FJ; Pieper J; Nganou C; Grehn M; Vitali M; Olliges R; Eichler HJ; Eckert HJ
    J Plant Physiol; 2011 Aug; 168(12):1473-87. PubMed ID: 21396735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina.
    Nganou AC; David L; Adir N; Pouhe D; Deen MJ; Mkandawire M
    Photochem Photobiol Sci; 2015 Feb; 14(2):429-38. PubMed ID: 25470281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina.
    Chen M; Floetenmeyer M; Bibby TS
    FEBS Lett; 2009 Aug; 583(15):2535-9. PubMed ID: 19596002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering.
    Golub M; Combet S; Wieland DCF; Soloviov D; Kuklin A; Lokstein H; Schmitt FJ; Olliges R; Hecht M; Eckert HJ; Pieper J
    Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):318-324. PubMed ID: 28131736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryospectroscopy Studies of Intact Light-Harvesting Antennas Reveal Empirical Electronic Energy Transitions in Two Cyanobacteria Species.
    Nganou C; Adir N; Mkandawire M
    J Phys Chem B; 2018 Mar; 122(12):3068-3078. PubMed ID: 29457730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation wavelength-dependent electron-phonon and electron-vibrational coupling in the CP29 antenna complex of green plants.
    Rätsep M; Pieper J; Irrgang KD; Freiberg A
    J Phys Chem B; 2008 Jan; 112(1):110-8. PubMed ID: 18067279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. I. Difference fluorescence line-narrowing.
    Pieper J; Rätsep M; Trostmann I; Paulsen H; Renger G; Freiberg A
    J Phys Chem B; 2011 Apr; 115(14):4042-52. PubMed ID: 21417350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer.
    Schmitt FJ; Maksimov EG; Hätti P; Weißenborn J; Jeyasangar V; Razjivin AP; Paschenko VZ; Friedrich T; Renger G
    Biochim Biophys Acta; 2012 Aug; 1817(8):1461-70. PubMed ID: 22503663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d.
    Marquardt J; Senger H; Miyashita H; Miyachi S; Mörschel E
    FEBS Lett; 1997 Jun; 410(2-3):428-32. PubMed ID: 9237676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy.
    Rätsep M; Pajusalu M; Linnanto JM; Freiberg A
    J Chem Phys; 2014 Oct; 141(15):155102. PubMed ID: 25338912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing.
    Pieper J; Rätsep M; Irrgang KD; Freiberg A
    J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.
    Ranjbar Choubeh R; Sonani RR; Madamwar D; Struik PC; Bader AN; Robert B; van Amerongen H
    Photosynth Res; 2018 Mar; 135(1-3):79-86. PubMed ID: 28755150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificially produced [7-formyl]-chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina.
    Tsuchiya T; Akimoto S; Mizoguchi T; Watabe K; Kindo H; Tomo T; Tamiaki H; Mimuro M
    Biochim Biophys Acta; 2012 Aug; 1817(8):1285-91. PubMed ID: 22402227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of phycocyanin from heterocyst-forming filamentous cyanobacterium Nostoc sp. WR13.
    Patel HM; Roszak AW; Madamwar D; Cogdell RJ
    Int J Biol Macromol; 2019 Aug; 135():62-68. PubMed ID: 31121226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the origin of exciton electronic structure in phycobiliproteins.
    Womick JM; Miller SA; Moran AM
    J Chem Phys; 2010 Jul; 133(2):024507. PubMed ID: 20632763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher Order Vibronic Sidebands of Chlorophyll
    Rätsep M; Linnanto JM; Freiberg A
    J Phys Chem B; 2019 Aug; 123(33):7149-7156. PubMed ID: 31356081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335.
    Miao D; Ding WL; Zhao BQ; Lu L; Xu QZ; Scheer H; Zhao KH
    Biochim Biophys Acta; 2016 Jun; 1857(6):688-94. PubMed ID: 27045046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.