These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 24560935)

  • 21. Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery.
    Naveja JJ; Medina-Franco JL
    Expert Opin Drug Discov; 2015 Oct; 10(10):1059-70. PubMed ID: 26289576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring global growth of activity cliff information over time and assessing activity cliff frequencies and distributions.
    Stumpfe D; Bajorath J
    Future Med Chem; 2015 Aug; 7(12):1565-79. PubMed ID: 26334207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Illuminator: increasing synergies between medicinal and computational chemists.
    Gobbi A; Lardy M; Kim SH; Ruebsam F; Tran M; Webber SE; Xiang AX
    In Silico Biol; 2011-2012; 11(1-2):83-93. PubMed ID: 22475753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Support of Medicinal Chemistry in Industrial Settings.
    Ortwine DF
    Methods Mol Biol; 2018; 1705():345-350. PubMed ID: 29188571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analyzing multitarget activity landscapes using protein-ligand interaction fingerprints: interaction cliffs.
    Méndez-Lucio O; Kooistra AJ; de Graaf C; Bender A; Medina-Franco JL
    J Chem Inf Model; 2015 Feb; 55(2):251-62. PubMed ID: 25615841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introducing a new category of activity cliffs with chemical modifications at multiple sites and rationalizing contributions of individual substitutions.
    Stumpfe D; Hu H; Bajorath J
    Bioorg Med Chem; 2019 Aug; 27(16):3605-3612. PubMed ID: 31272836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular scaffolds with high propensity to form multi-target activity cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series.
    Sisay MT; Peltason L; Bajorath J
    J Chem Inf Model; 2009 Oct; 49(10):2179-89. PubMed ID: 19761254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds.
    Wassermann AM; Dimova D; Bajorath J
    Chem Biol Drug Des; 2011 Aug; 78(2):224-8. PubMed ID: 21624090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single R-Group Polymorphisms (SRPs) and R-cliffs: an intuitive framework for analyzing and visualizing activity cliffs in a single analog series.
    Agrafiotis DK; Wiener JJ; Skalkin A; Kolpak J
    J Chem Inf Model; 2011 May; 51(5):1122-31. PubMed ID: 21504183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of activity and selectivity cliffs.
    Peltason L; Bajorath J
    Methods Mol Biol; 2011; 672():119-32. PubMed ID: 20838966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs.
    Dimova D; Stumpfe D; Bajorath J
    J Med Chem; 2014 Aug; 57(15):6553-63. PubMed ID: 25014781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DataWarrior: an open-source program for chemistry aware data visualization and analysis.
    Sander T; Freyss J; von Korff M; Rufener C
    J Chem Inf Model; 2015 Feb; 55(2):460-73. PubMed ID: 25558886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medicinal chemistry inspired fragment-based drug discovery.
    Lanter J; Zhang X; Sui Z
    Methods Enzymol; 2011; 493():421-45. PubMed ID: 21371600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular similarity in medicinal chemistry.
    Maggiora G; Vogt M; Stumpfe D; Bajorath J
    J Med Chem; 2014 Apr; 57(8):3186-204. PubMed ID: 24151987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel worlds of public and commercial bioactive chemistry data.
    Lipinski CA; Litterman NK; Southan C; Williams AJ; Clark AM; Ekins S
    J Med Chem; 2015 Mar; 58(5):2068-76. PubMed ID: 25415348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemists: AI Is Here; Unite To Get the Benefits.
    Griffen EJ; Dossetter AG; Leach AG
    J Med Chem; 2020 Aug; 63(16):8695-8704. PubMed ID: 32459965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.
    Dimova D; Hu Y; Bajorath J
    J Med Chem; 2012 Nov; 55(22):10220-8. PubMed ID: 23050678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.