These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 24561168)
1. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction. Kim D; Shin H; Sohn KA; Verma A; Ritchie MD; Kim JH Methods; 2014 Jun; 67(3):344-53. PubMed ID: 24561168 [TBL] [Abstract][Full Text] [Related]
2. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459 [TBL] [Abstract][Full Text] [Related]
3. Intra-relation reconstruction from inter-relation: miRNA to gene expression. Kim D; Shin H; Joung JG; Lee SY; Kim JH BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S8. PubMed ID: 24521265 [TBL] [Abstract][Full Text] [Related]
4. Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma. Kim D; Li R; Lucas A; Verma SS; Dudek SM; Ritchie MD J Am Med Inform Assoc; 2017 May; 24(3):577-587. PubMed ID: 28040685 [TBL] [Abstract][Full Text] [Related]
5. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer. Tong L; Wu H; Wang MD Methods; 2021 May; 189():74-85. PubMed ID: 32763377 [TBL] [Abstract][Full Text] [Related]
6. A prognostic prediction model for ovarian cancer using a cross-modal view correlation discovery network. Wang H; Han X; Ren J; Cheng H; Li H; Li Y; Li X Math Biosci Eng; 2024 Jan; 21(1):736-764. PubMed ID: 38303441 [TBL] [Abstract][Full Text] [Related]
7. Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Zeng H; Chen L; Zhang M; Luo Y; Ma X Gynecol Oncol; 2021 Oct; 163(1):171-180. PubMed ID: 34275655 [TBL] [Abstract][Full Text] [Related]
8. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors. Sohn KA; Kim D; Lim J; Kim JH BMC Syst Biol; 2013 Dec; 7 Suppl 6(Suppl 6):S9. PubMed ID: 24521303 [TBL] [Abstract][Full Text] [Related]
9. Creation and validation of models to predict response to primary treatment in serous ovarian cancer. Gonzalez Bosquet J; Devor EJ; Newtson AM; Smith BJ; Bender DP; Goodheart MJ; McDonald ME; Braun TA; Thiel KW; Leslie KK Sci Rep; 2021 Mar; 11(1):5957. PubMed ID: 33727600 [TBL] [Abstract][Full Text] [Related]
10. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. Kim D; Shin H; Song YS; Kim JH J Biomed Inform; 2012 Dec; 45(6):1191-8. PubMed ID: 22910106 [TBL] [Abstract][Full Text] [Related]
11. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. Kim D; Li R; Dudek SM; Ritchie MD J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077 [TBL] [Abstract][Full Text] [Related]
12. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data. Tong D; Tian Y; Zhou T; Ye Q; Li J; Ding K; Li J BMC Med Inform Decis Mak; 2020 Feb; 20(1):22. PubMed ID: 32033604 [TBL] [Abstract][Full Text] [Related]
13. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801 [TBL] [Abstract][Full Text] [Related]
14. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease. Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050 [TBL] [Abstract][Full Text] [Related]
15. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Liu C; Wang X; Genchev GZ; Lu H Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406 [TBL] [Abstract][Full Text] [Related]
16. Does combining numerous data types in multi-omics data improve or hinder performance in survival prediction? Insights from a large-scale benchmark study. Li Y; Herold T; Mansmann U; Hornung R BMC Med Inform Decis Mak; 2024 Sep; 24(1):244. PubMed ID: 39223659 [TBL] [Abstract][Full Text] [Related]
17. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction. Vangimalla RR; Sreevalsan-Nair J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654 [TBL] [Abstract][Full Text] [Related]
18. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction. Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033 [TBL] [Abstract][Full Text] [Related]
19. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. Tong L; Mitchel J; Chatlin K; Wang MD BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515 [TBL] [Abstract][Full Text] [Related]
20. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. Malik V; Kalakoti Y; Sundar D BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]