BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 24561168)

  • 1. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction.
    Kim D; Shin H; Sohn KA; Verma A; Ritchie MD; Kim JH
    Methods; 2014 Jun; 67(3):344-53. PubMed ID: 24561168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
    Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH
    J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-relation reconstruction from inter-relation: miRNA to gene expression.
    Kim D; Shin H; Joung JG; Lee SY; Kim JH
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S8. PubMed ID: 24521265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma.
    Kim D; Li R; Lucas A; Verma SS; Dudek SM; Ritchie MD
    J Am Med Inform Assoc; 2017 May; 24(3):577-587. PubMed ID: 28040685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prognostic prediction model for ovarian cancer using a cross-modal view correlation discovery network.
    Wang H; Han X; Ren J; Cheng H; Li H; Li Y; Li X
    Math Biosci Eng; 2024 Jan; 21(1):736-764. PubMed ID: 38303441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer.
    Zeng H; Chen L; Zhang M; Luo Y; Ma X
    Gynecol Oncol; 2021 Oct; 163(1):171-180. PubMed ID: 34275655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors.
    Sohn KA; Kim D; Lim J; Kim JH
    BMC Syst Biol; 2013 Dec; 7 Suppl 6(Suppl 6):S9. PubMed ID: 24521303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation and validation of models to predict response to primary treatment in serous ovarian cancer.
    Gonzalez Bosquet J; Devor EJ; Newtson AM; Smith BJ; Bender DP; Goodheart MJ; McDonald ME; Braun TA; Thiel KW; Leslie KK
    Sci Rep; 2021 Mar; 11(1):5957. PubMed ID: 33727600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction.
    Kim D; Shin H; Song YS; Kim JH
    J Biomed Inform; 2012 Dec; 45(6):1191-8. PubMed ID: 22910106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
    Tong D; Tian Y; Zhou T; Ye Q; Li J; Ding K; Li J
    BMC Med Inform Decis Mak; 2020 Feb; 20(1):22. PubMed ID: 32033604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.
    Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.