These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24561257)

  • 21. The H2.0-like homeobox transcription factor modulates yolk sac vascular remodeling in mouse embryos.
    Prahst C; Kasaai B; Moraes F; Jahnsen ED; Larrivee B; Villegas D; Pardanaud L; Pibouin-Fragner L; Zhang F; Zaun HC; Eichmann A; Jones EA
    Arterioscler Thromb Vasc Biol; 2014 Jul; 34(7):1468-76. PubMed ID: 24764455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment.
    Kreiling JA; ; Williams G; Creton R
    Dev Dyn; 2007 Jul; 236(7):1963-9. PubMed ID: 17503454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resveratrol derivative, trans-3,5,4'-trimethoxystilbene, exerts antiangiogenic and vascular-disrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation.
    Alex D; Leong EC; Zhang ZJ; Yan GT; Cheng SH; Leong CW; Li ZH; Lam KH; Chan SW; Lee SM
    J Cell Biochem; 2010 Feb; 109(2):339-46. PubMed ID: 20014068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of vascular systems between the brain and spinal cord in zebrafish.
    Kimura E; Isogai S; Hitomi J
    Dev Biol; 2015 Oct; 406(1):40-51. PubMed ID: 26234750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro development of zebrafish vascular networks.
    Ibrahim M; Richardson MK
    Reprod Toxicol; 2017 Jun; 70():102-115. PubMed ID: 28192181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.
    Kochhan E; Lenard A; Ellertsdottir E; Herwig L; Affolter M; Belting HG; Siekmann AF
    PLoS One; 2013; 8(10):e75060. PubMed ID: 24146748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart.
    Boselli F; Steed E; Freund JB; Vermot J
    Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodynamic flow visualization of early embryonic great vessels using μPIV.
    Goktas S; Chen CY; Kowalski WJ; Pekkan K
    Methods Mol Biol; 2015; 1189():17-30. PubMed ID: 25245684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using correlative light and electron microscopy to study zebrafish vascular morphogenesis.
    Goetz JG; Monduc F; Schwab Y; Vermot J
    Methods Mol Biol; 2015; 1189():31-46. PubMed ID: 25245685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of voltage-activated calcium channels in the early zebrafish embryo.
    Sanhueza D; Montoya A; Sierralta J; Kukuljan M
    Zygote; 2009 May; 17(2):131-5. PubMed ID: 19222870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endothelial cilia are essential for developmental vascular integrity in zebrafish.
    Kallakuri S; Yu JA; Li J; Li Y; Weinstein BM; Nicoli S; Sun Z
    J Am Soc Nephrol; 2015 Apr; 26(4):864-75. PubMed ID: 25214579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical factors in the development of the vascular bed.
    Jones EA
    Respir Physiol Neurobiol; 2011 Aug; 178(1):59-65. PubMed ID: 21458600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MiR-1 and miR-206 target different genes to have opposing roles during angiogenesis in zebrafish embryos.
    Lin CY; Lee HC; Fu CY; Ding YY; Chen JS; Lee MH; Huang WJ; Tsai HJ
    Nat Commun; 2013; 4():2829. PubMed ID: 24264597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulse propagation by a capacitive mechanism drives embryonic blood flow.
    Anton H; Harlepp S; Ramspacher C; Wu D; Monduc F; Bhat S; Liebling M; Paoletti C; Charvin G; Freund JB; Vermot J
    Development; 2013 Nov; 140(21):4426-34. PubMed ID: 24089470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin and shaping of the laterality organ in zebrafish.
    Oteíza P; Köppen M; Concha ML; Heisenberg CP
    Development; 2008 Aug; 135(16):2807-13. PubMed ID: 18635607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamic Studies for Analyzing the Teratogenic Effects of Drugs in the Zebrafish Embryo.
    Yalcin HC
    Methods Mol Biol; 2018; 1797():487-495. PubMed ID: 29896711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studying cilia in zebrafish.
    Drummond I
    Methods Cell Biol; 2009; 93():197-217. PubMed ID: 20409819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiomotin regulates endothelial cell migration during embryonic angiogenesis.
    Aase K; Ernkvist M; Ebarasi L; Jakobsson L; Majumdar A; Yi C; Birot O; Ming Y; Kvanta A; Edholm D; Aspenström P; Kissil J; Claesson-Welsh L; Shimono A; Holmgren L
    Genes Dev; 2007 Aug; 21(16):2055-68. PubMed ID: 17699752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis.
    Bisgrove BW; Snarr BS; Emrazian A; Yost HJ
    Dev Biol; 2005 Nov; 287(2):274-88. PubMed ID: 16216239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.