These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24561270)

  • 21. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance.
    Choi MJ; Chae KJ; Ajayi FF; Kim KY; Yu HW; Kim CW; Kim IS
    Bioresour Technol; 2011 Jan; 102(1):298-303. PubMed ID: 20659795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of biofilm formation on membrane performance in submerged membrane bioreactors.
    Mafirad S; Mehrnia MR; Azami H; Sarrafzadeh MH
    Biofouling; 2011 May; 27(5):477-85. PubMed ID: 21604217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater.
    Zheng X; Ernst M; Huck PM; Jekel M
    Water Res; 2010 Oct; 44(18):5212-21. PubMed ID: 20637488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do biological-based strategies hold promise to biofouling control in MBRs?
    Malaeb L; Le-Clech P; Vrouwenvelder JS; Ayoub GM; Saikaly PE
    Water Res; 2013 Oct; 47(15):5447-63. PubMed ID: 23863390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and antibacterial property of PES/AgNO3 three-bore hollow fiber ultrafiltration membranes.
    Chen Y; Dang J; Zhang Y; Zhang H; Liu J
    Water Sci Technol; 2013; 67(7):1519-24. PubMed ID: 23552240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes.
    Zhang M; Zhang K; De Gusseme B; Verstraete W
    Water Res; 2012 May; 46(7):2077-87. PubMed ID: 22330259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abatement of the membrane biofouling: Performance of an in-situ integrated bioelectrochemical-ultrafiltration system.
    Xu L; Graham NJD; Wei C; Zhang L; Yu W
    Water Res; 2020 Jul; 179():115892. PubMed ID: 32388047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical impedance spectroscopy (EIS) reveals the role of microbial fuel cell-ceramic membrane bioreactor (MFC-CMBR): Electricity utilization and membrane fouling.
    Wang L; Wu Y; You Z; Bao H; Zhang L; Wang J
    Water Res; 2022 Aug; 222():118854. PubMed ID: 35853333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst.
    Noori MT; Jain SC; Ghangrekar MM; Mukherjee CK
    Bioresour Technol; 2016 Nov; 220():183-189. PubMed ID: 27567479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials.
    Mauter MS; Wang Y; Okemgbo KC; Osuji CO; Giannelis EP; Elimelech M
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2861-8. PubMed ID: 21736330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of silicone membranes to enhance gas transfer during microbial fuel cell operation on carbon monoxide.
    Hussain A; Tartakovsky B; Guiot SR; Raghavan V
    Bioresour Technol; 2011 Dec; 102(23):10898-906. PubMed ID: 21983405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofouling-Resistant Ultrafiltration Membranes via Codeposition of Dopamine and Cetyltrimethylammonium Bromide with Retained Size Selectivity and Water Flux.
    Cihanoğlu A; Schiffman JD; Alsoy Altinkaya S
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38116-38131. PubMed ID: 35947443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.
    Shrestha N; Chilkoor G; Xia L; Alvarado C; Kilduff JE; Keating JJ; Belfort G; Gadhamshetty V
    Water Res; 2017 Jun; 117():37-48. PubMed ID: 28388506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength.
    Ji E; Moon H; Piao J; Ha PT; An J; Kim D; Woo JJ; Lee Y; Moon SH; Rittmann BE; Chang IS
    Biosens Bioelectron; 2011 Mar; 26(7):3266-71. PubMed ID: 21255993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.
    Baranitharan E; Khan MR; Prasad DM; Teo WF; Tan GY; Jose R
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):15-24. PubMed ID: 24981021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.
    Jana PS; Behera M; Ghangrekar MM
    J Environ Sci Eng; 2012 Jan; 54(1):1-9. PubMed ID: 23741851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency.
    Marka S; Anand S
    J Dairy Sci; 2018 Jan; 101(1):84-95. PubMed ID: 29103718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the bio-inspired modification of low-cost membranes with TiO
    Bahamonde Soria R; Chinchin BD; Arboleda D; Zhao Y; Bonilla P; Van der Bruggen B; Luis P
    Chemosphere; 2022 Mar; 291(Pt 1):132840. PubMed ID: 34780732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.