BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 24561273)

  • 1. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain.
    Dröse S; Brandt U
    Adv Exp Med Biol; 2012; 748():145-69. PubMed ID: 22729857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
    Chen CL; Zhang L; Jin Z; Kasumov T; Chen YR
    Am J Physiol Cell Physiol; 2022 Jan; 322(1):C12-C23. PubMed ID: 34757853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase.
    Musatov A; Robinson NC
    Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage.
    Galkin A
    Biochemistry (Mosc); 2019 Nov; 84(11):1411-1423. PubMed ID: 31760927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix.
    Engelhard J; Christian BE; Weingarten L; Kuntz G; Spremulli LL; Dick TP
    Free Radic Biol Med; 2011 May; 50(10):1234-41. PubMed ID: 21295137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.
    Kolossov VL; Beaudoin JN; Ponnuraj N; DiLiberto SJ; Hanafin WP; Kenis PJ; Gaskins HR
    Am J Physiol Cell Physiol; 2015 Jul; 309(2):C81-91. PubMed ID: 25994788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of mitochondrial complex I.
    Wirth C; Brandt U; Hunte C; Zickermann V
    Biochim Biophys Acta; 2016 Jul; 1857(7):902-14. PubMed ID: 26921811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production.
    Jong CJ; Azuma J; Schaffer S
    Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry.
    Kumar V; Kleffmann T; Hampton MB; Cannell MB; Winterbourn CC
    Free Radic Biol Med; 2013 May; 58():109-17. PubMed ID: 23376233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction.
    Juszczuk IM; Szal B; Rychter AM
    Plant Cell Environ; 2012 Feb; 35(2):296-307. PubMed ID: 21414015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.