These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 24561273)

  • 1. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain.
    Dröse S; Brandt U
    Adv Exp Med Biol; 2012; 748():145-69. PubMed ID: 22729857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
    Chen CL; Zhang L; Jin Z; Kasumov T; Chen YR
    Am J Physiol Cell Physiol; 2022 Jan; 322(1):C12-C23. PubMed ID: 34757853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase.
    Musatov A; Robinson NC
    Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage.
    Galkin A
    Biochemistry (Mosc); 2019 Nov; 84(11):1411-1423. PubMed ID: 31760927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix.
    Engelhard J; Christian BE; Weingarten L; Kuntz G; Spremulli LL; Dick TP
    Free Radic Biol Med; 2011 May; 50(10):1234-41. PubMed ID: 21295137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.
    Kolossov VL; Beaudoin JN; Ponnuraj N; DiLiberto SJ; Hanafin WP; Kenis PJ; Gaskins HR
    Am J Physiol Cell Physiol; 2015 Jul; 309(2):C81-91. PubMed ID: 25994788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of mitochondrial complex I.
    Wirth C; Brandt U; Hunte C; Zickermann V
    Biochim Biophys Acta; 2016 Jul; 1857(7):902-14. PubMed ID: 26921811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production.
    Jong CJ; Azuma J; Schaffer S
    Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry.
    Kumar V; Kleffmann T; Hampton MB; Cannell MB; Winterbourn CC
    Free Radic Biol Med; 2013 May; 58():109-17. PubMed ID: 23376233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction.
    Juszczuk IM; Szal B; Rychter AM
    Plant Cell Environ; 2012 Feb; 35(2):296-307. PubMed ID: 21414015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.