These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 24561292)
41. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
42. Drift studies--comparison of field and wind tunnel experiments. Stadler R; Regenauer W Commun Agric Appl Biol Sci; 2005; 70(4):971-3. PubMed ID: 16628944 [TBL] [Abstract][Full Text] [Related]
43. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS. Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728 [TBL] [Abstract][Full Text] [Related]
44. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
45. Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island. Garron CA; Davis KC; Ernst WR Pest Manag Sci; 2009 Jun; 65(6):688-96. PubMed ID: 19278022 [TBL] [Abstract][Full Text] [Related]
46. Spray drift reduction techniques for vineyards in fragmented landscapes. Otto S; Loddo D; Baldoin C; Zanin G J Environ Manage; 2015 Oct; 162():290-8. PubMed ID: 26265598 [TBL] [Abstract][Full Text] [Related]
47. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
48. Spray drift deposition comparison of fluorimetry and analytical confirmation techniques. Szarka AZ; Kruger GR; Golus J; Rodgers C; Perkins D; Brain RA Pest Manag Sci; 2021 Sep; 77(9):4192-4199. PubMed ID: 33942978 [TBL] [Abstract][Full Text] [Related]
49. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
50. Effect of natural windbreaks on drift reduction in orchard spraying. Wenneker M; Heijne B; van de Zande JC Commun Agric Appl Biol Sci; 2005; 70(4):961-9. PubMed ID: 16628943 [TBL] [Abstract][Full Text] [Related]
51. Comparison of different sampling techniques for the evaluation of pesticide spray drift in apple orchards. Briand O; Bertrand F; Seux R; Millet M Sci Total Environ; 2002 Apr; 288(3):199-213. PubMed ID: 11991524 [TBL] [Abstract][Full Text] [Related]
52. Pesticide residues on the external surfaces of field-crop sprayers: environmental impact. Ramwell CT; Johnson PD; Boxall A; Rimmer DA Pest Manag Sci; 2004 Aug; 60(8):795-802. PubMed ID: 15307671 [TBL] [Abstract][Full Text] [Related]
53. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
54. Occurrence of spray drift for different crop types: cereal, cereal stubble and grassland. De Schampheleire M; Nuyttens D; Dekeyser D; Verboven P; Spanoghe P Commun Agric Appl Biol Sci; 2008; 73(4):743-7. PubMed ID: 19226823 [TBL] [Abstract][Full Text] [Related]
56. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management. Smith LA; Thomson SJ Pest Manag Sci; 2003; 59(6-7):699-707. PubMed ID: 12846320 [TBL] [Abstract][Full Text] [Related]
57. Spray drift in field crops: A dataset to analyse the influence of air induction nozzles, hedges, and their combination on the reduction of sedimentary drift, aerial drift and exposure of bystanders. Perriot B; Pasquier D; Hudebine Y; Verpont F; Vergès A; Codis S; Douzals JP; Bedos C; Grimbuhler S; Sellam M; Naud O Data Brief; 2024 Jun; 54():110366. PubMed ID: 38623545 [TBL] [Abstract][Full Text] [Related]
58. Interception of spray drift by border structures. Part 2: field experiments. De Schampheleire M; Nuyttens D; Dekeyser D; Verboven P; Spanoghe P Commun Agric Appl Biol Sci; 2008; 73(4):723-7. PubMed ID: 19226820 [TBL] [Abstract][Full Text] [Related]
59. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Gregorio E; Torrent X; Planas S; Rosell-Polo JR Sci Total Environ; 2019 Oct; 687():967-977. PubMed ID: 31412500 [TBL] [Abstract][Full Text] [Related]
60. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]