These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24561356)

  • 21. Nuclear localization of HIV-1 tat functionalized gold nanoparticles.
    Berry CC; de la Fuente JM; Mullin M; Chu SW; Curtis AS
    IEEE Trans Nanobioscience; 2007 Dec; 6(4):262-9. PubMed ID: 18217618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-Term Tracking of the Osteogenic Differentiation of Mouse BMSCs by Aggregation-Induced Emission Nanoparticles.
    Gao M; Chen J; Lin G; Li S; Wang L; Qin A; Zhao Z; Ren L; Wang Y; Tang BZ
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17878-84. PubMed ID: 27400339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment.
    Zhang P; Lock LL; Cheetham AG; Cui H
    Mol Pharm; 2014 Mar; 11(3):964-73. PubMed ID: 24437690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes.
    Ciobanasu C; Siebrasse JP; Kubitscheck U
    Biophys J; 2010 Jul; 99(1):153-62. PubMed ID: 20655843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular cargo delivery using tat peptide and derivatives.
    Zhao M; Weissleder R
    Med Res Rev; 2004 Jan; 24(1):1-12. PubMed ID: 14595670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy.
    Vallotton P; Angel B; McCall M; Osmond M; Kirby J
    J Microsc; 2015 Feb; 257(2):166-9. PubMed ID: 25421539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microenvironments and different nanoparticle dynamics in living cells revealed by a standard nanoparticle.
    Pack CG; Song MR; Tae EL; Hiroshima M; Byun KH; Kim JS; Sako Y
    J Control Release; 2012 Nov; 163(3):315-21. PubMed ID: 22922061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Simple Zn2+ Complex-Based Composite System for Efficient Gene Delivery.
    Zhang Z; Zhao Y; Meng X; Zhao D; Zhang D; Wang L; Liu C
    PLoS One; 2016; 11(7):e0158766. PubMed ID: 27433798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles.
    Chu Y; Chen N; Yu H; Mu H; He B; Hua H; Wang A; Sun K
    Int J Nanomedicine; 2017; 12():1353-1368. PubMed ID: 28260884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale 3D tracking with conjugated polymer nanoparticles.
    Yu J; Wu C; Sahu SP; Fernando LP; Szymanski C; McNeill J
    J Am Chem Soc; 2009 Dec; 131(51):18410-4. PubMed ID: 20028148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning.
    Kingston BR; Syed AM; Ngai J; Sindhwani S; Chan WCW
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14937-14946. PubMed ID: 31285340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIV-1 TAT and IMMUNE DYSREGULATION in AIDS PATHOGENESIS: a THERAPEUTIC TARGET.
    Chiozzini C; Toschi E
    Curr Drug Targets; 2016; 17(1):33-45. PubMed ID: 26302810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.
    Hauser AK; Anderson KW; Hilt JZ
    Nanomedicine (Lond); 2016 Jul; 11(14):1769-85. PubMed ID: 27388639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA.
    Malhotra M; Tomaro-Duchesneau C; Saha S; Kahouli I; Prakash S
    Int J Nanomedicine; 2013; 8():2041-52. PubMed ID: 23723699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-Dependent Cellular Uptake of Trans-Activator of Transcription Functionalized Nanoparticles.
    Kim H; Choi JH; Kang SR; Oh BK; Lee W; Kwon OS; Shin K
    J Biomed Nanotechnol; 2016 Mar; 12(3):536-45. PubMed ID: 27280251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of TAT peptide-modified poly(N-isopropylacrylamide) microgel particles and their cellular uptake, intracellular distribution, and influence on cytoviability in response to temperature change.
    Zhang W; Mao Z; Gao C
    J Colloid Interface Sci; 2014 Nov; 434():122-9. PubMed ID: 25170605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy.
    Polyakov V; Sharma V; Dahlheimer JL; Pica CM; Luker GD; Piwnica-Worms D
    Bioconjug Chem; 2000; 11(6):762-71. PubMed ID: 11087323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring.
    Faruque OM; Le-Nguyen D; Lajoix AD; Vives E; Petit P; Bataille D; Hani EH
    Am J Physiol Cell Physiol; 2009 Feb; 296(2):C306-16. PubMed ID: 19073898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.