These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 24561478)
1. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Ito S; Yoshida M Toxins (Basel); 2014 Feb; 6(2):665-78. PubMed ID: 24561478 [TBL] [Abstract][Full Text] [Related]
2. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120. Liu WC; Tomino Y; Lu KC Toxins (Basel); 2018 Sep; 10(9):. PubMed ID: 30208594 [TBL] [Abstract][Full Text] [Related]
3. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Opdebeeck B; D'Haese PC; Verhulst A Toxins (Basel); 2020 Jan; 12(1):. PubMed ID: 31963891 [TBL] [Abstract][Full Text] [Related]
4. Impact of the Oral Adsorbent AST-120 on Organ-Specific Accumulation of Uremic Toxins: LC-MS/MS and MS Imaging Techniques. Sato E; Saigusa D; Mishima E; Uchida T; Miura D; Morikawa-Ichinose T; Kisu K; Sekimoto A; Saito R; Oe Y; Matsumoto Y; Tomioka Y; Mori T; Takahashi N; Sato H; Abe T; Niwa T; Ito S Toxins (Basel); 2017 Dec; 10(1):. PubMed ID: 29283413 [TBL] [Abstract][Full Text] [Related]
6. Improved dialysis removal of protein-bound uremic toxins by salvianolic acids. Li J; Wang Y; Xu X; Cao W; Shen Z; Wang N; Leng J; Zou N; Shang E; Zhu Z; Guo J; Duan J Phytomedicine; 2019 Apr; 57():166-173. PubMed ID: 30772752 [TBL] [Abstract][Full Text] [Related]
7. Removal of protein-bound, hydrophobic uremic toxins by a combined fractionated plasma separation and adsorption technique. Brettschneider F; Tölle M; von der Giet M; Passlick-Deetjen J; Steppan S; Peter M; Jankowski V; Krause A; Kühne S; Zidek W; Jankowski J Artif Organs; 2013 Apr; 37(4):409-16. PubMed ID: 23330821 [TBL] [Abstract][Full Text] [Related]
8. Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3-4 chronic kidney disease. Rossi M; Campbell KL; Johnson DW; Stanton T; Vesey DA; Coombes JS; Weston KS; Hawley CM; McWhinney BC; Ungerer JP; Isbel N Arch Med Res; 2014 May; 45(4):309-17. PubMed ID: 24751327 [TBL] [Abstract][Full Text] [Related]
9. Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271 [TBL] [Abstract][Full Text] [Related]
16. Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. Madero M; Cano KB; Campos I; Tao X; Maheshwari V; Brown J; Cornejo B; Handelman G; Thijssen S; Kotanko P Clin J Am Soc Nephrol; 2019 Mar; 14(3):394-402. PubMed ID: 30755453 [TBL] [Abstract][Full Text] [Related]
17. [Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection]. Watanabe H Yakugaku Zasshi; 2013; 133(8):889-95. PubMed ID: 23903229 [TBL] [Abstract][Full Text] [Related]
18. Protein-bound molecules: a large family with a bad character. Sirich TL; Meyer TW; Gondouin B; Brunet P; Niwa T Semin Nephrol; 2014 Mar; 34(2):106-17. PubMed ID: 24780467 [TBL] [Abstract][Full Text] [Related]
19. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Lekawanvijit S; Kompa AR; Wang BH; Kelly DJ; Krum H Circ Res; 2012 Nov; 111(11):1470-83. PubMed ID: 23139286 [TBL] [Abstract][Full Text] [Related]