BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 24561486)

  • 1. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automatic X-ray image segmentation via joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grützner PA; Nolte LP; Zheng G
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):227-34. PubMed ID: 24505765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An articulated statistical shape model for accurate hip joint segmentation.
    Kainmueller D; Lamecker H; Zachow S; Hege HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6345-51. PubMed ID: 19964159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based segmentation using graph representations.
    Seghers D; Hermans J; Loeckx D; Maes F; Vandermeulen D; Suetens P
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):393-400. PubMed ID: 18979771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal shape and intensity cost path segmentation.
    Seghers D; Loeckx D; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2007 Aug; 26(8):1115-29. PubMed ID: 17695131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung segmentation from CT with severe pathologies using anatomical constraints.
    Birkbeck N; Kohlberger T; Zhang J; Sofka M; Kaftan J; Comaniciu D; Zhou SK
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):804-11. PubMed ID: 25333193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic categorization of anatomical landmark-local appearances based on diffeomorphic demons and spectral clustering for constructing detector ensembles.
    Hanaoka S; Masutani Y; Nemoto M; Nomura Y; Yoshikawa T; Hayashi N; Ohtomo K
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):106-13. PubMed ID: 23286038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques.
    Bouraoui B; Ronse C; Baruthio J; Passat N; Germain P
    Comput Med Imaging Graph; 2010 Jul; 34(5):377-87. PubMed ID: 20153604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An estimation/correction algorithm for detecting bone edges in CT images.
    Yao W; Abolmaesumi P; Greenspan M; Ellis RE
    IEEE Trans Med Imaging; 2005 Aug; 24(8):997-1010. PubMed ID: 16092332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation.
    Peters J; Ecabert O; Meyer C; Kneser R; Weese J
    Med Image Anal; 2010 Feb; 14(1):70-84. PubMed ID: 19931481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combinatorial method for 3D landmark-based morphometry: application to the study of coronal craniosynostosis.
    Gioan E; Sol K; Subsol G
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):533-41. PubMed ID: 23286172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.
    Schneider M; Hirsch S; Weber B; Székely G; Menze BH
    Med Image Anal; 2015 Jan; 19(1):220-49. PubMed ID: 25461339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ray-tracing based registration for HRCT images of the lungs.
    Busayara S; Zrimec T
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):670-7. PubMed ID: 17354830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data.
    Staal J; van Ginneken B; Viergever MA
    Med Image Anal; 2007 Feb; 11(1):35-46. PubMed ID: 17126065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granular computing in model based abdominal organs detection.
    Juszczyk J; Pietka E; Pyciński B
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():121-30. PubMed ID: 25804441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel segmentation method using multiresolution analysis with 3D visualization for X-ray coronary angiogram images.
    Nirmaladevi S; Lavanya P; Kumaravel N
    J Med Eng Technol; 2008; 32(3):235-44. PubMed ID: 18432472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.