These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24561592)
1. Survival of airborne MS2 bacteriophage generated from human saliva, artificial saliva, and cell culture medium. Zuo Z; Kuehn TH; Bekele AZ; Mor SK; Verma H; Goyal SM; Raynor PC; Pui DY Appl Environ Microbiol; 2014 May; 80(9):2796-803. PubMed ID: 24561592 [TBL] [Abstract][Full Text] [Related]
2. Viral Preservation with Protein-Supplemented Nebulizing Media in Aerosols. Humphrey B; Tezak M; Lobitz M; Hendricks A; Sanchez A; Zenker J; Storch S; Davis RD; Ricken B; Cahill J Appl Environ Microbiol; 2023 Mar; 89(3):e0154522. PubMed ID: 36856430 [TBL] [Abstract][Full Text] [Related]
3. Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. Pan M; Eiguren-Fernandez A; Hsieh H; Afshar-Mohajer N; Hering SV; Lednicky J; Hugh Fan Z; Wu CY J Appl Microbiol; 2016 Mar; 120(3):805-15. PubMed ID: 26751045 [TBL] [Abstract][Full Text] [Related]
4. Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses. Niazi S; Philp LK; Spann K; Johnson GR Appl Environ Microbiol; 2021 Jul; 87(16):e0049721. PubMed ID: 34085856 [TBL] [Abstract][Full Text] [Related]
5. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Smither SJ; Eastaugh LS; Findlay JS; Lever MS Emerg Microbes Infect; 2020 Dec; 9(1):1415-1417. PubMed ID: 32496967 [TBL] [Abstract][Full Text] [Related]
6. Determination of the distribution of infectious viruses in aerosol particles using water-based condensational growth technology and a bacteriophage MS2 model. Pan M; Carol L; Lednicky JA; Eiguren-Fernandez A; Hering S; Fan ZH; Wu CY Aerosol Sci Technol; 2019; 53(5):583-593. PubMed ID: 31359905 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness of the Nanosilver/TiO Wang IJ; Chen YC; Su C; Tsai MH; Shen WT; Bai CH; Yu KP J Aerosol Med Pulm Drug Deliv; 2021 Sep; 34(5):293-302. PubMed ID: 33761275 [No Abstract] [Full Text] [Related]
8. Inactivation of airborne porcine reproductive and respiratory syndrome virus (PRRSv) by a packed bed dielectric barrier discharge non-thermal plasma. Xia T; Yang M; Marabella I; Lee EM; Olson B; Zarling D; Torremorell M; Clack HL J Hazard Mater; 2020 Jul; 393():122266. PubMed ID: 32126420 [TBL] [Abstract][Full Text] [Related]
9. Assessment of iodine-treated filter media for removal and inactivation of MS2 bacteriophage aerosols. Lee JH; Wu CY; Lee CN; Anwar D; Wysocki KM; Lundgren DA; Farrah S; Wander J; Heimbuch BK J Appl Microbiol; 2009 Dec; 107(6):1912-23. PubMed ID: 19508297 [TBL] [Abstract][Full Text] [Related]
10. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Fedorenko A; Grinberg M; Orevi T; Kashtan N Sci Rep; 2020 Dec; 10(1):22419. PubMed ID: 33376251 [TBL] [Abstract][Full Text] [Related]
11. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Fabian P; McDevitt JJ; Houseman EA; Milton DK Indoor Air; 2009 Oct; 19(5):433-41. PubMed ID: 19689447 [TBL] [Abstract][Full Text] [Related]
12. Reaerosolization of MS2 bacteriophage from an N95 filtering facepiece respirator by simulated coughing. Fisher EM; Richardson AW; Harpest SD; Hofacre KC; Shaffer RE Ann Occup Hyg; 2012 Apr; 56(3):315-25. PubMed ID: 22127875 [TBL] [Abstract][Full Text] [Related]
13. Effect of relative humidity on the airborne survival of rhinovirus-14. Karim YG; Ijaz MK; Sattar SA; Johnson-Lussenburg CM Can J Microbiol; 1985 Nov; 31(11):1058-61. PubMed ID: 3004682 [TBL] [Abstract][Full Text] [Related]
14. Minimizing Bias in Virally Seeded Water Treatment Studies: Evaluation of Optimal Bacteriophage and Mammalian Virus Preparation Methodologies. Dunkin N; Weng S; Jacangelo JG; Schwab KJ Food Environ Virol; 2017 Dec; 9(4):473-486. PubMed ID: 28616834 [TBL] [Abstract][Full Text] [Related]
15. Reduction of bacteriophage MS2 by filtration and irradiation determined by culture and quantitative real-time RT-PCR. Lodder WJ; van den Berg HH; Rutjes SA; Bouwknegt M; Schijven JF; de Roda Husman AM J Water Health; 2013 Jun; 11(2):256-66. PubMed ID: 23708573 [TBL] [Abstract][Full Text] [Related]
16. Airborne virus capture and inactivation by an electrostatic particle collector. Kettleson EM; Ramaswami B; Hogan CJ; Lee MH; Statyukha GA; Biswas P; Angenent LT Environ Sci Technol; 2009 Aug; 43(15):5940-6. PubMed ID: 19731701 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate vitrification in aerosolized saliva is associated with the humidity-dependent infectious potential of airborne coronavirus. Nieto-Caballero M; Davis RD; Fuques E; Gomez OM; Huynh E; Handorean A; Ushijima S; Tolbert M; Hernandez M PNAS Nexus; 2023 Feb; 2(2):pgac301. PubMed ID: 36743472 [TBL] [Abstract][Full Text] [Related]
18. High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses. Kim HR; An S; Hwang J J Hazard Mater; 2021 Jun; 412():125219. PubMed ID: 33516114 [TBL] [Abstract][Full Text] [Related]
19. Effect of ultraviolet germicidal irradiation on viral aerosols. Walker CM; Ko G Environ Sci Technol; 2007 Aug; 41(15):5460-5. PubMed ID: 17822117 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading. Joe YH; Park DH; Hwang J J Hazard Mater; 2016 Jan; 301():547-53. PubMed ID: 26434534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]