BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24561677)

  • 1. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.
    Zhao Y; Lai X; Deng P; Nie Y; Zhang Y; Xing L; Xue X
    Nanotechnology; 2014 Mar; 25(11):115502. PubMed ID: 24561677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement.
    Lin Y; Deng P; Nie Y; Hu Y; Xing L; Zhang Y; Xue X
    Nanoscale; 2014 May; 6(9):4604-10. PubMed ID: 24633007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H₂S sensor.
    Nie Y; Deng P; Zhao Y; Wang P; Xing L; Zhang Y; Xue X
    Nanotechnology; 2014 Jul; 25(26):265501. PubMed ID: 24916033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High response and selectivity of a Cu-ZnO nanowire nanogenerator as a self-powered/active H₂S sensor.
    Fu Y; Zhao Y; Wang P; Xing L; Xue X
    Phys Chem Chem Phys; 2015 Jan; 17(3):2121-6. PubMed ID: 25484127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.
    Fu Y; Nie Y; Zhao Y; Wang P; Xing L; Zhang Y; Xue X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10482-90. PubMed ID: 25915174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor.
    Zhao Y; Deng P; Nie Y; Wang P; Zhang Y; Xing L; Xue X
    Biosens Bioelectron; 2014 Jul; 57():269-75. PubMed ID: 24594594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism.
    Yu B; Fu Y; Wang P; Zhao Y; Xing L; Xue X
    Phys Chem Chem Phys; 2015 Apr; 17(16):10856-60. PubMed ID: 25820663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor.
    Xue X; Nie Y; He B; Xing L; Zhang Y; Wang ZL
    Nanotechnology; 2013 Jun; 24(22):225501. PubMed ID: 23633477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect.
    Zhao Y; Fu Y; Wang P; Xing L; Xue X
    Nanoscale; 2015 Feb; 7(5):1904-11. PubMed ID: 25525689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effects of a Combination of Cr2O3-Functionalization and UV-Irradiation Techniques on the Ethanol Gas Sensing Performance of ZnO Nanorod Gas Sensors.
    Park S; Sun GJ; Jin C; Kim HW; Lee S; Lee C
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2805-11. PubMed ID: 26751000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator.
    Saravanakumar B; Soyoon S; Kim SJ
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13716-23. PubMed ID: 25068976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomer: Design of ZnO Nanostructures (Nanobush and Nanowire) and Their Room-Temperature Ethanol Vapor Sensing Signatures.
    Shankar P; Rayappan JBB
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38135-38145. PubMed ID: 28990752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-powered AC magnetic sensor based on piezoelectric nanogenerator.
    Yu A; Song M; Zhang Y; Kou J; Zhai J; Lin Wang Z
    Nanotechnology; 2014 Nov; 25(45):455503. PubMed ID: 25333328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction.
    Subha PP; Jayaraj MK
    BMC Chem; 2019 Dec; 13(1):4. PubMed ID: 31355365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance.
    Zhang Y; Xu J; Xu P; Zhu Y; Chen X; Yu W
    Nanotechnology; 2010 Jul; 21(28):285501. PubMed ID: 20562475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors.
    Wang P; Deng P; Nie Y; Zhao Y; Zhang Y; Xing L; Xue X
    Nanotechnology; 2014 Feb; 25(7):075501. PubMed ID: 24451084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration.
    Nour ES; Chey CO; Willander M; Nur O
    Nanotechnology; 2015 Mar; 26(9):095502. PubMed ID: 25676711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring.
    Chen X; Parida K; Wang J; Xiong J; Lin MF; Shao J; Lee PS
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42200-42209. PubMed ID: 29111642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposed device based on MoSe2-ZnO heterojunctions on rGO for enhanced ethanol gas sensing performances at room temperature.
    Jain N; Puri N
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38941983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires.
    Park S; Kim S; Ko H; Lee C
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9025-8. PubMed ID: 25971003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.