BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24561765)

  • 1. An improved mechanical testing method to assess bone-implant anchorage.
    Bell S; Ajami E; Davies JE
    J Vis Exp; 2014 Feb; (84):e51221. PubMed ID: 24561765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia.
    Ajami E; Bell S; Liddell RS; Davies JE
    Acta Biomater; 2016 Jul; 39():169-179. PubMed ID: 27181877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic scale-range synergy at the functional bone/implant interface.
    Davies JE; Mendes VC; Ko JC; Ajami E
    Biomaterials; 2014 Jan; 35(1):25-35. PubMed ID: 24099707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces.
    Mendes VC; Moineddin R; Davies JE
    Biomaterials; 2007 Nov; 28(32):4748-55. PubMed ID: 17697709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface.
    Davies JE; Ajami E; Moineddin R; Mendes VC
    Biomaterials; 2013 May; 34(14):3535-46. PubMed ID: 23415644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and histologic evaluation of Ca-P plasma-spray and magnetron sputter-coated implants in trabecular bone of the goat.
    Hulshoff JE; Hayakawa T; van Dijk K; Leijdekkers-Govers AF; van der Waerden JP; Jansen JA
    J Biomed Mater Res; 1997 Jul; 36(1):75-83. PubMed ID: 9212391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points.
    Liddell RS; Liu ZM; Mendes VC; Davies JE
    Clin Oral Implants Res; 2020 Jan; 31(1):49-63. PubMed ID: 31566254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrobotized blasting improves the bone-to-textured implant response. A preclinical in vivo biomechanical study.
    Coelho PG; Gil LF; Neiva R; Jimbo R; Tovar N; Lilin T; Bonfante EA
    J Mech Behav Biomed Mater; 2016 Mar; 56():175-182. PubMed ID: 26703231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Bone Bonding to Nanotextured Implant Surfaces at a Short Healing Period: A Biomechanical Tensile Testing in the Rat Femur.
    Coelho PG; Zavanelli RA; Salles MB; Yeniyol S; Tovar N; Jimbo R
    Implant Dent; 2016 Jun; 25(3):322-7. PubMed ID: 27213527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats.
    Diefenbeck M; Mückley T; Schrader C; Schmidt J; Zankovych S; Bossert J; Jandt KD; Faucon M; Finger U
    Biomaterials; 2011 Nov; 32(32):8041-7. PubMed ID: 21840591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synergistic effect of TiO
    Jiang N; Du P; Qu W; Li L; Liu Z; Zhu S
    Int J Nanomedicine; 2016; 11():4719-4733. PubMed ID: 27695328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests.
    Aparicio C; Padrós A; Gil FJ
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1672-82. PubMed ID: 22098868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model.
    Schwarz ML; Kowarsch M; Rose S; Becker K; Lenz T; Jani L
    J Biomed Mater Res A; 2009 Jun; 89(3):667-78. PubMed ID: 18442101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.
    Cohen DJ; Cheng A; Sahingur K; Clohessy RM; Hopkins LB; Boyan BD; Schwartz Z
    Biomed Mater; 2017 Apr; 12(2):025021. PubMed ID: 28452335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of the helica femoral implant system using traditional and modified techniques.
    Dosch M; Hayashi K; Garcia TC; Weeren R; Stover SM
    Vet Surg; 2013 Oct; 42(7):867-76. PubMed ID: 23980642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A "best fit" approach for synergistic surface parameters to guide the design of candidate implant surfaces.
    Ay B; Mendes VC; Zhang L; Davies JE
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2165-2177. PubMed ID: 30677220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing and porous metallic surfaces: a new orthopedic application.
    Melican MC; Zimmerman MC; Dhillon MS; Ponnambalam AR; Curodeau A; Parsons JR
    J Biomed Mater Res; 2001 May; 55(2):194-202. PubMed ID: 11255171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits.
    Salou L; Hoornaert A; Louarn G; Layrolle P
    Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats.
    Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD
    Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.