These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24562038)

  • 1. Highly resonant and directional optical nanoantennas.
    Qi J; Kaiser T; Peuker R; Pertsch T; Lederer F; Rockstuhl C
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):388-93. PubMed ID: 24562038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Emission from Dielectric Leaky-Wave Nanoantennas.
    Peter M; Hildebrandt A; Schlickriede C; Gharib K; Zentgraf T; Förstner J; Linden S
    Nano Lett; 2017 Jul; 17(7):4178-4183. PubMed ID: 28617604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing resonances of optical nanoantennas by circular gratings.
    Qi J; Kaiser T; Klein AE; Steinert M; Pertsch T; Lederer F; Rockstuhl C
    Opt Express; 2015 Jun; 23(11):14583-95. PubMed ID: 26072818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity resonances of metal-dielectric-metal nanoantennas.
    Joshi BP; Wei QH
    Opt Express; 2008 Jul; 16(14):10315-22. PubMed ID: 18607441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling.
    Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT
    Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas.
    Abb M; Wang Y; de Groot CH; Muskens OL
    Nat Commun; 2014 Sep; 5():4869. PubMed ID: 25189713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas.
    See KM; Lin FC; Chen TY; Huang YX; Huang CH; Yeşilyurt ATM; Huang JS
    Nano Lett; 2018 Sep; 18(9):6002-6008. PubMed ID: 30142981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas.
    Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS
    ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
    de Ceglia D; Vincenti MA; Akozbek N; Bloemer MJ; Scalora M
    Opt Express; 2017 Feb; 25(4):3980-3990. PubMed ID: 28241607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry.
    Tok RU; Ow-Yang C; Sendur K
    Opt Express; 2011 Nov; 19(23):22731-42. PubMed ID: 22109154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.
    Kim J; Roh YG; Cheon S; Kim UJ; Hwang SW; Park Y; Lee CW
    Sci Rep; 2015 Jul; 5():11832. PubMed ID: 26135115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
    Singh A; Calbris G; van Hulst NF
    Nano Lett; 2014 Aug; 14(8):4715-23. PubMed ID: 25019603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoantennas for visible and infrared radiation.
    Biagioni P; Huang JS; Hecht B
    Rep Prog Phys; 2012 Feb; 75(2):024402. PubMed ID: 22790344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.