These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24562147)

  • 1. Phase-sensitive amplification in silicon photonic crystal waveguides.
    Zhang Y; Husko C; Schröder J; Lefrancois S; Rey IH; Krauss TF; Eggleton BJ
    Opt Lett; 2014 Jan; 39(2):363-6. PubMed ID: 24562147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pump-degenerate phase-sensitive amplification in amorphous silicon waveguides.
    Sun H; Wang KY; Foster AC
    Opt Lett; 2017 Sep; 42(18):3590-3593. PubMed ID: 28914909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study.
    Zhang Y; Husko C; Lefrancois S; Rey IH; Krauss TF; Schröder J; Eggleton BJ
    Opt Express; 2015 Jun; 23(13):17101-10. PubMed ID: 26191718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-wave mixing in slow light engineered silicon photonic crystal waveguides.
    Monat C; Ebnali-Heidari M; Grillet C; Corcoran B; Eggleton BJ; White TP; O'Faolain L; Li J; Krauss TF
    Opt Express; 2010 Oct; 18(22):22915-27. PubMed ID: 21164630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide.
    He J; Clark AS; Collins MJ; Li J; Krauss TF; Eggleton BJ; Xiong C
    Opt Lett; 2014 Jun; 39(12):3575-8. PubMed ID: 24978540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations.
    Li J; O'Faolain L; Rey IH; Krauss TF
    Opt Express; 2011 Feb; 19(5):4458-63. PubMed ID: 21369277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide.
    Neo R; Schröder J; Paquot Y; Choi DY; Madden S; Luther-Davies B; Eggleton BJ
    Opt Express; 2013 Apr; 21(7):7926-33. PubMed ID: 23571884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide.
    Husko C; Vo TD; Corcoran B; Li J; Krauss TF; Eggleton BJ
    Opt Express; 2011 Oct; 19(21):20681-90. PubMed ID: 21997079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides.
    McMillan JF; Yu M; Kwong DL; Wong CW
    Opt Express; 2010 Jul; 18(15):15484-97. PubMed ID: 20720928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of slow light enhanced four-wave mixing in photonic crystal waveguides.
    Santagiustina M; Someda CG; Vadalà G; Combrié S; De Rossi A
    Opt Express; 2010 Sep; 18(20):21024-9. PubMed ID: 20940997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient four wave mixing in GaInP photonic crystal waveguides.
    Eckhouse V; Cestier I; Eisenstein G; Combrié S; Colman P; De Rossi A; Santagiustina M; Someda CG; Vadalà G
    Opt Lett; 2010 May; 35(9):1440-2. PubMed ID: 20436596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide.
    Corcoran B; Monat C; Pudo D; Eggleton BJ; Krauss TF; Moss DJ; O'Faolain L; Pelusi M; White TP
    Opt Lett; 2010 Apr; 35(7):1073-5. PubMed ID: 20364221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing slow-light photonic crystal waveguides for four-wave mixing applications.
    Kanakis P; Kamalakis T; Sphicopoulos T
    Opt Lett; 2014 Feb; 39(4):884-7. PubMed ID: 24562232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics.
    Guan X; Ding Y; Frandsen LH
    Opt Lett; 2015 Aug; 40(16):3893-6. PubMed ID: 26274687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.
    Shen G; Tian H; Ji Y
    Appl Opt; 2013 Feb; 52(6):1218-25. PubMed ID: 23434992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.
    Xiong C; Monat C; Clark AS; Grillet C; Marshall GD; Steel MJ; Li J; O'Faolain L; Krauss TF; Rarity JG; Eggleton BJ
    Opt Lett; 2011 Sep; 36(17):3413-5. PubMed ID: 21886228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of four-wave mixing of optical pulses in slow- and fast-light regimes of a silicon photonic crystal waveguide.
    Lavdas S; Panoiu NC
    Opt Lett; 2015 Sep; 40(18):4233-6. PubMed ID: 26371904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J
    Opt Express; 2012 Apr; 20(8):8920-8. PubMed ID: 22513603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing photonic crystal waveguides for broadband four-wave mixing applications.
    Kanakis P; Kamalakis T; Sphicopoulos T
    Opt Lett; 2015 Mar; 40(6):1041-4. PubMed ID: 25768177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.