These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24562214)

  • 1. Absorption enhancement of single silicon nanowire by tailoring rear metallic film for photovoltaic applications.
    Wu S; Li X; Zhan Y; Li K
    Opt Lett; 2014 Feb; 39(4):817-20. PubMed ID: 24562214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications.
    Wu Y; Xia Z; Liang Z; Zhou J; Jiao H; Cao H; Qin X
    Opt Express; 2014 Aug; 22 Suppl 5():A1292-302. PubMed ID: 25322184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector.
    Zhou K; Guo Z; Li X; Jung JY; Jee SW; Park KT; Um HD; Wang N; Lee JH
    Opt Express; 2012 Sep; 20 Suppl 5():A777-87. PubMed ID: 23037544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a plasmonic back reflector for silicon nanowire decorated solar cells.
    Ren R; Guo Y; Zhu R
    Opt Lett; 2012 Oct; 37(20):4245-7. PubMed ID: 23073425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband performance enhancement of thin-film amorphous silicon solar cells with conformal zig-zag configuration.
    Yang Z; Shang A; Zhan Y; Zhang C; Li X
    Opt Lett; 2013 Dec; 38(23):5071-4. PubMed ID: 24281512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.
    Al-Zoubi OH; Said TM; Alher MA; El-Ghazaly S; Naseem H
    Opt Express; 2015 Jul; 23(15):A767-78. PubMed ID: 26367679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles.
    Cai B; Li X; Zhang Y; Jia B
    Nanotechnology; 2016 May; 27(19):195401. PubMed ID: 27040376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of silicon nanowire can transport much more light into silicon substrate.
    Li Y; Liu W; Luo Y; Cui M; Li M
    Opt Express; 2018 Jan; 26(2):A19-A29. PubMed ID: 29402052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.
    Schmitt SW; Brönstrup G; Shalev G; Srivastava SK; Bashouti MY; Döhler GH; Christiansen SH
    Nanoscale; 2014 Jul; 6(14):7897-902. PubMed ID: 24830733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel.
    Xie X; Zeng X; Yang P; Li H; Li J; Zhang X; Wang Q
    Nanoscale Res Lett; 2012 Nov; 7(1):621. PubMed ID: 23146105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications.
    Du QG; Kam CH; Demir HV; Yu HY; Sun XW
    Opt Lett; 2011 May; 36(10):1884-6. PubMed ID: 21593923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective method to extract optical bandgaps in Si nanowire arrays.
    Jung JY; Zhou K; Um HD; Guo Z; Jee SW; Park KT; Lee JH
    Opt Lett; 2011 Jul; 36(14):2677-9. PubMed ID: 21765506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core.
    Zhan Y; Zhao J; Zhou C; Alemayehu M; Li Y; Li Y
    Opt Express; 2012 May; 20(10):11506-16. PubMed ID: 22565770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective utilization of visible light (including lambda > 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode.
    Yu H; Li X; Quan X; Chen S; Zhang Y
    Environ Sci Technol; 2009 Oct; 43(20):7849-55. PubMed ID: 19921904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications.
    Fang H; Li X; Song S; Xu Y; Zhu J
    Nanotechnology; 2008 Jun; 19(25):255703. PubMed ID: 21828663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact comprehensive equations for the photon management properties of silicon nanowire.
    Li Y; Li M; Li R; Fu P; Wang T; Luo Y; Mbengue JM; Trevor M
    Sci Rep; 2016 Apr; 6():24847. PubMed ID: 27103087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles.
    Chen Y; Han W; Yang F
    Opt Lett; 2013 Oct; 38(19):3973-5. PubMed ID: 24081102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition.
    Wang WC; Lin CW; Chen HJ; Chang CW; Huang JJ; Yang MJ; Tjahjono B; Huang JJ; Hsu WC; Chen MJ
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9752-9. PubMed ID: 24028609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.