These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 24562235)

  • 1. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
    Das R; Srivastava T; Jha R
    Opt Lett; 2014 Feb; 39(4):896-9. PubMed ID: 24562235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions.
    Buzavaite-Verteliene E; Plikusiene I; Tolenis T; Valavicius A; Anulyte J; Ramanavicius A; Balevicius Z
    Opt Express; 2020 Sep; 28(20):29033-29043. PubMed ID: 33114809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optical Fiber Refractive Index Sensor Based on the Hybrid Mode of Tamm and Surface Plasmon Polaritons.
    Zhang X; Zhu XS; Shi YW
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application.
    Anulytė J; Bužavaitė-Vertelienė E; Stankevičius E; Vilkevičius K; Balevičius Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration.
    Bian Y; Zheng Z; Zhao X; Zhu J; Zhou T
    Opt Express; 2009 Nov; 17(23):21320-5. PubMed ID: 19997371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Localized Surface Plasmon Polariton Based D-Type Twin-Hole Photonic Crystal Fiber Microbiosensor: Enhanced Scheme for SERS Reinforcement.
    Aruna Gandhi MS; Senthilnathan K; Ramesh Babu P; Li Q
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32937922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method.
    Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit.
    Maqsood MW; Mehfuz R; Chau KJ
    Opt Express; 2010 Oct; 18(21):21669-77. PubMed ID: 20941066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.
    Shuai B; Xia L; Liu D
    Opt Express; 2012 Nov; 20(23):25858-66. PubMed ID: 23187403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid modes in gold nanoslit arrays on Bragg nanostructures and their application for sensitive biosensors.
    Lo SC; Lee CW; Chern RL; Wei PK
    Opt Express; 2022 Aug; 30(17):30494-30506. PubMed ID: 36242152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-mode independent detection of pressure and refractive index by miniature grating-coupled surface plasmon sensor.
    Ni H; Zhang L; Ping A; Krasavin AV; Ali H; Ni B; Chang J
    Opt Express; 2022 Feb; 30(4):5758-5768. PubMed ID: 35209531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure.
    Cheng CW; Abbas MN; Shih MH; Chang YC
    Opt Express; 2011 Nov; 19(24):23698-705. PubMed ID: 22109396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bragg grating based biochemical sensor using submicron Si/SiO2 waveguides for lab-on-a-chip applications: a novel design.
    Tripathi SM; Kumar A; Marin E; Meunier JP
    Appl Opt; 2009 Aug; 48(23):4562-7. PubMed ID: 19668270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short and long range surface plasmon polariton waveguides for xylene sensing.
    Brigo L; Gazzola E; Cittadini M; Zilio P; Zacco G; Romanato F; Martucci A; Guglielmi M; Brusatin G
    Nanotechnology; 2013 Apr; 24(15):155502. PubMed ID: 23518462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing.
    Yao H; Zhong S
    Opt Express; 2014 Oct; 22(21):25149-60. PubMed ID: 25401547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.
    Chien FC; Chen SJ
    Biosens Bioelectron; 2004 Oct; 20(3):633-42. PubMed ID: 15494249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wide bandgap plasmonic Bragg reflector.
    Liu JQ; Wang LL; He MD; Huang WQ; Wang D; Zou BS; Wen S
    Opt Express; 2008 Mar; 16(7):4888-94. PubMed ID: 18542588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.