These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24562248)

  • 1. Mid-infrared difference-frequency generation in suspended GaAs waveguides.
    Stievater TH; Mahon R; Park D; Rabinovich WS; Pruessner MW; Khurgin JB; Richardson CJ
    Opt Lett; 2014 Feb; 39(4):945-8. PubMed ID: 24562248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.
    Wang X; Madsen CK
    Opt Express; 2014 Nov; 22(22):27183-92. PubMed ID: 25401869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides.
    Logan DF; Giguere M; Villeneuve A; Helmy AS
    Opt Lett; 2013 Nov; 38(21):4457-60. PubMed ID: 24177118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides.
    Han J; Abolghasem P; Bijlani BJ; Helmy AS
    Opt Lett; 2009 Dec; 34(23):3656-8. PubMed ID: 19953152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared.
    Khurgin JB; Pruessner MW; Stievater TH; Rabinovich WS
    Opt Lett; 2008 Dec; 33(24):2904-6. PubMed ID: 19079487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference-frequency generation in AlGaAs Bragg reflection waveguides.
    Han JB; Abolghasem P; Kang D; Bijlani BJ; Helmy AS
    Opt Lett; 2010 Jul; 35(14):2334-6. PubMed ID: 20634821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance.
    Sun Y; Zheng Z; Cheng J; Sun G; Qiao G
    Opt Express; 2015 Mar; 23(5):6370-8. PubMed ID: 25836857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5.2-5.6-microm source tunable by frequency conversion in a GaAs-based waveguide.
    Bravetti P; Fiore A; Berger V; Rosencher E; Nagle J; Gauthier-Lafaye O
    Opt Lett; 1998 Mar; 23(5):331-3. PubMed ID: 18084502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared frequency comb with 25  pJ threshold via CW-seeded optical parametric generation in nonlinear waveguide.
    Roiz M; Lai JY; Karhu J; Vainio M
    Opt Lett; 2021 Aug; 46(16):4037-4040. PubMed ID: 34388805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides.
    Stanton EJ; Chiles J; Nader N; Moody G; Volet N; Chang L; Bowers JE; Woo Nam S; Mirin RP
    Opt Express; 2020 Mar; 28(7):9521-9532. PubMed ID: 32225558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GaAs-chip-based mid-infrared supercontinuum generation.
    Granger G; Bailly M; Delahaye H; Jimenez C; Tiliouine I; Leventoux Y; Orlianges JC; Couderc V; Gérard B; Becheker R; Idlahcen S; Godin T; Hideur A; Grisard A; Lallier E; Février S
    Light Sci Appl; 2023 Oct; 12(1):252. PubMed ID: 37848458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.
    Dave UD; Uvin S; Kuyken B; Selvaraja S; Leo F; Roelkens G
    Opt Express; 2013 Dec; 21(26):32032-9. PubMed ID: 24514798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J
    Opt Express; 2012 Apr; 20(8):8920-8. PubMed ID: 22513603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of optical forces on nonlinear optical frequency conversion in nanoscale waveguide devices.
    Wu ZX; Luo W; Tang SH; Xu F; Lu YQ
    Opt Express; 2016 Jan; 24(2):1633-40. PubMed ID: 26832541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The measurement of water vapor isotope based on mid-infrared difference frequency generation].
    Wang ZQ; Wang HP; Cao ZS; Yuan YQ; Zhang WJ; Gong ZB; Gao XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3271-4. PubMed ID: 20210148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable coherent infrared generation near 2.5 microm from self-difference frequency mixing in YAl3(BO3)4:Nd3+.
    Brenier A
    Appl Opt; 2004 Nov; 43(32):6007-10. PubMed ID: 15587730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nonlinear conversion from mid- to near-infrared wavelengths using Silicon Germanium waveguides.
    Hammani K; Ettabib MA; Bogris A; Kapsalis A; Syvridis D; Brun M; Labeye P; Nicoletti S; Petropoulos P
    Opt Express; 2014 Apr; 22(8):9667-74. PubMed ID: 24787852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.
    Devi K; Kumar SC; Ebrahim-Zadeh M
    Opt Express; 2013 Oct; 21(21):24829-36. PubMed ID: 24150326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical terahertz wave generation in a planar GaAs waveguide.
    Vodopyanov KL; Avetisyan YH
    Opt Lett; 2008 Oct; 33(20):2314-6. PubMed ID: 18923607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth.
    Zhang J; Cassan E; Zhang X
    Opt Lett; 2013 Jun; 38(12):2089-91. PubMed ID: 23938986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.